ARDUINO SOLAR CHARGE CONTROLLER ( Version 2.0)

644,194

2,027

763

[ Play Video ]

One year ago, I began building my own solar system to provide power for my village house.Initially I made a LM317 based charge controller and an Energy meter for monitoring the system.Finally I made PWM charge controller.In April-2014 I posted my PWM solar charge controller designs on the web,it became very popular. Lots of people all over the world have built their own. So many students have made it for their college project by taking help from me.I got several mails every day from people with questions regarding hardware and software modification for different rated solar panel and battery. A very large percentage of the emails are regarding the modification of charge controller for a 12Volt solar system.

You can find all of my projects on : https://www.opengreenenergy.com/

You can see my other version charge controllers

ARDUINO MPPT SOLAR CHARGE CONTROLLER ( Version-3.0)
ARDUINO SOLAR CHARGE CONTROLLER (Version-1)

To solve this problem I made this new version charge controller so that any one can use it without changing the hardware and software. I combine both the energy meter and charge controller in this design.

Specification of version-2 charge controller :


1.Charge controller as well energy meter

2. Automatic Battery Voltage Selection (6V/12V)

3.PWM charging algorithm with auto charge set point according to the battery voltage

4.LED indication for the state of charge and load status

5. 20x4 character LCD display for displaying voltages,current,power,energy and temperature.

6.Lightning protection

7.Reverse current flow protection

8.Short Circuit and Over load protection

9. Temperature Compensation for Charging


Electrical specifications :

1.Rated Voltage= 6v /12V

2.Maximum current = 10A

3.Maximum load current =10A

4.Open Circuit Voltage = 8-11V for 6V system /15 -25V for 12V system

Step 1: Parts and Tools Required :

Parts:

1.Arduino Nano (Amazon / Banggood)

2.P-MOSFET ( Amazon / IRF 9540 x2 )

3.Power diode ( Amazon / MBR 2045 for 10A and IN5402 for 2A)

4.Buck Converter ( Amazon / Banggood)

5.Temperature Sensor( Amazon / Banggood)

6.Current Sensor ( Amazon / Banggood)

7.TVS diode ( Amazon / P6KE36CA)

8.Transistors ( 2N3904 or Banggood )

9.Resistors ( 100k x 2, 20k x 2,10k x 2,1k x 2, 330ohm x 5) : Banggood

10.Ceramic Capacitors (0.1uF x 2) : Banggood

11.Electrolytic Capacitors ( 100uF and 10uF): Banggood

12. 20x4 I2C LCD ( Amazon / Banggood)

13.RGB LED ( Amazon / Banggood)

14.Bi Color LED ( Amazon )

15.Jumper Wires/Wires(Banggood)

16.Header Pins ( Amazon / Banggood )

17.Heat Sink ( Amazon / Banggood)

18.Fuse Holder and fuses ( Amazon / eBay)

19.Push Button ( Amazon / Banggood )

20.Perforated Board (Amazon / Banggood)

21.Project Enclosure ( Banggood )

22.Screw terminals ( 3x 2pin and 1x6 pin) : Banggood

23.Nuts/Screws/Bolts ( Banggood )

24.Plastic Base

Tools :

1.Soldering Iron ( Amazon )

2.Wire Cutter and Stripper ( Amazon )

3.Screw Driver ( Amazon )

4.Cordless Drill ( Amazon )

5.Dremel ( Amazon )

6.Glue Gun ( Amazon )

7.Hobby Knife ( Amazon )


Step 2: How the Charge Controller Works :

The heart of of the charge controller is Arduino nano board.The arduino MCU senses the solar panel and battery voltages.According to this voltages it decides how to charge the battery and control the load.

The amount of charging current is determined by difference between battery voltage and charge set point voltages. The controller uses two stages charging algorithm.According to the charging algorithm it gives a fixed frequency PWM signal to the solar panel side p-MOSFET. The frequency of PWM signal is 490.20Hz(default frequency for pin-3). The duty cycle 0-100% is adjusted by the error signal.

The controller gives HIGH or LOW command to the load side p-MOSFET according to the dusk/dawn and battery voltage.

The full schematic is attached bellow.

Step 3: Main Functions of Solar Charge Controller:

The charge controller is designed by taking care of the following points.

1.Prevent Battery Overcharge: To limit the energy supplied to the battery by the solar panel when the battery becomes fully charged.This is implemented in charge_cycle() of my code.

2.Prevent Battery Over discharge: To disconnect the battery from electrical loads when the battery reaches low state of charge.This is implemented in load_control() of my code.

3.Provide Load Control Functions: To automatically connect and disconnect an electrical load at a specified time. The load will ON when sunset and OFF when sunrise.This is implemented in load_control() of my code.

4.Monitoring Power and Energy : To monitor the load power and energy and display it.

5.Protect from abnormal Condition: To protect the circuit from different abnormal situation like lightening,over voltage,over current and short circuit etc.

6.Indicating and Displaying: To indicate and display the various parameters

7.Serial Communication: To print various parameters in serial monitor

Step 4: Sensing Voltages,Current and Temperature :

1.Voltage Sensor:

The voltage sensors are used to sense the voltage of solar panel and battery.It is implemented by using two voltage divider circuits.It consists of two resistors R1=100k and R2=20k for sensing the solar panel voltage ans similarly R3=100k and R4=20k for battery voltage.The out put from the R1and R2 is connected to arduino analog pin A0 and out put from the R3 and R4 is connected to arduino analog pin A1.

2.Current Sensor :

The current sensor is used for measuring the load current.later this current is used to calculate the load power and energy.I used a hall effect current sensor (ACS712-20A)

3.Temperature Sensor :

The temperature sensor is used to sense the room temperature. I used LM35 temperature sensor which is rated for −55°C to +150°C Range.

Why Temperature monitoring is Required ?

The battery’s chemical reactions change with temperature.As the battery gets warmer, the gassing increases. As the battery gets colder,it becomes more resistant to charging. Depending on how much the battery temperature varies, it is important to adjust the charging for temperature changes.So it is important to adjust charging to account for the temperature effects. The temperature sensor will measure the battery temperature, and the Solar Charge Controller uses this input to adjust the charge set point as required.The compensation value is - 5mv /degC/cell for lead acid type batteries.(–30mV/ºC for 12V and 15mV/ºC for 6V battery).The negative sign of temperature compensation indicates,increase in temperature require a reduction in charge set point.

For more details on Understanding and Optimizing Battery Temperature Compensation

Step 5: Sensors Callibration

Voltage Sensors :

5V = ADC count 1024

1 ADC count = (5/1024)Volt= 0.0048828Volt

Vout=Vin*R2/(R1+R2)

Vin = Vout*(R1+R2)/R2 R1=100 and R2=20

Vin= ADC count*0.00488*(120/20) Volt

Current Sensor:

As per seller information for ACS 712 current sensor

Sensitivity is =100mV / A =0.100V/A

No test current through the output voltage is VCC / 2= 2.5

ADC count= 1024/5*Vin and Vin=2.5+0.100*I (where I=current)

ADC count= 204.8(2.5+0.1*I) =512+20.48*I

=> 20.48*I = (ADC count-512)

=> I =(ADC count/20.48)- 512/20.48

Current (I) =0.04882*ADC -25

More details on ACS712

Temperature Sensor :

As per data sheet of LM35

Sensitivity=10 mV/°C

Temp in deg C =(5/1024)*ADC count*100

Note : The sensors are calibrated by assuming the arduino Vcc= 5V reference.But in practical it is not 5V always.So there may be chance of getting wrong value from the actual value.It can be solved by following way.

Measure the voltage between arduino 5V and GND by a multimeter.Use this voltage instead of 5V for Vcc in your code.Hit and try to edit this value until it matches the actual value.

Example: I got 4.47V instead of 5V.So the change should be 4.47/1024=0.0043652 instead of 0.0048828.

Step 6: Charging Algorithm

1.Bulk :At this mode, a preset maximum constant amount of current (amps) is fed into the battery as no PWM is present. As the battery is being charged up , the voltage of the battery increases gradually

2. Absorption: When the battery reaches the bulk charge set voltage, the PWM begins to hold the voltage constant. This is to avoid over-heating and over-gassing the battery. The current will taper down to safe levels as the battery becomes more fully charged.
3. Float: When the battery is fully recharged, the charging voltage is reduced to prevent further heating or gassing of the battery

This is the ideal charging procedure.

The present charge cycle block of code is not implements 3 stages charging.I use a easier logic in 2 stages.It works good.

I am trying the following logic for implementing the 3 stages charging.

Future Planning for Charging Cycle :

The bulk charge begins when solar panel voltage is larger than battery voltage. When the battery voltage reaches 14.4V, absorption charge will be entered. The charging current will be regulated by PWM signal to maintain the battery voltage at 14.4V for one hour. Float charge will then enter after one hour. The float stage generates a trickle charge to keep the battery voltage at 13.6V. When the battery voltage falls below 13.6V for 10mins, the charging cycle will be repeated.

I request community members to help me for writing the piece of code to implement the above logic.

Step 7: Load Control

To automatically connect and disconnect the load by monitoring dusk/dawn and battery voltage,load control is used.

The primary purpose of load control is to disconnect the load from battery to protect it from deep discharging. Deep discharging could damage the battery.

The DC load terminal is designed for low power DC load such as street light.

The PV panel itself is used as the light sensor.

Assuming solar panel voltage >5V means dawn and when < 5V dusk.

ON Condition:

In the evening, when the PV voltage level falls bellow 5V and battery voltage is higher than LVD setting, the controller will turn on the load and the load green led will glow.

OFF Condition:

The load will cut off in the following two condition.

1.In the morning when the PV voltage is larger than 5v,

2.When the battery voltage is lower than the LVD setting

The load red led ON indicates that load is cut off.

LVD is refers to Low Voltage Disconnect

Step 8: Power and Energy

Power :

Power is product of voltage (volt) and current (Amp)

P=VxI

Unit of power is Watt or KW

Energy:

Energy is product of power (watt) and time (Hour)

E= Pxt

Unit of Energy is Watt Hour or Kilowatt Hour (kWh)

To monitor the load power and energy above logic is implemented in software and the parameters are displayed in a 20x4 char LCD.

Step 9: Protection

1.Reverse polarity protection for solar panel

2. Overcharge protection

3. Deep discharge protection

4. Short circuit and Overload protection

5.Reverse current protection at night

6.Over voltage protection at solar panel input

For reverse polarity and reverse current flow protection I used a power diode (MBR2045).Power diode is used to handle large amount of current.In my earlier design I used a normal diode(IN4007).

Overcharge and Deep discharge protection is implemented by the software.

Over current and overload protection is implemented by using two fuses ( one at the solar panel side and other at load side).

Temporary over voltages occur in power systems for a variety of reasons, but lightning causes the most severe over voltages. This is particularly true with PV systems due to the exposed locations and system connecting cables.In this new design I used a 600 watt bidirectional TVS diode (P6KE36CA ) to suppress the lightning and over voltage at the PV terminals.In my earlier design I used a zeener diode.You can also use a similar TVS diode on the load side.

For selection guide of TVS diode click here

For choosing a right part no for TVS diode click here

Step 10: LED Indication

Battery State Of Charge (SOC) LED:

One important parameter that defines the energy content of the battery is the State of Charge (SOC). This parameter indicates how much charge is available in the battery

A RGB LED is used to indicate the battery state of charge.For connection refer the above schematic

Battery LED ------------>Battery Status

RED --------------------> Voltage is LOW

GREEN --------------------> Voltage is Healthy

BLUE --------------------> Fully Charged

Load LED :

A bi color (red/green) led is used for load status indication.Refer the above schematic for connection.

Load LED --------------------->Load Status

GREEN -------------------------> Connected (ON)

RED ---------------------------> Disconnected (OFF)

I include a third led for indicating the solar panel status.

Step 11: LCD Display

To display the voltage,current,power,energy and temperature a 20x4 I2C LCD is used.If you do not want to display the parameter then disable the lcd_display() from the void loop() function.After disable you have indication led to monitor the battery and load status.

You can refer this instructable for I2C LCD

Download the LiquidCrystal _I2C library from here

Note : In code you have to change the I2C module address.You can use the address scanner code given in the link.

Step 12: Bread Board Testing

It is always a good idea to test your circuit on a breadboard before soldering it together.

After connecting everything upload the code.The code is attached bellow.

The entire software is broken into small functional block for flexibility.Suppose the user is not interested to use a lcd display and happy with the led indication .Then just disable the lcd_display() from the void loop().Thats all.

Similarly according to the user requirement he can enable and disable the various functionality.

Download the code from my GitHub Account

ARDUINO-SOLAR-CHARGE-CONTROLLER-V-2

Step 13: Power Supply and Terminals :

Terminals :

Add 3 screw terminals for solar input,battery and load terminal connections.Then solder it.I used the middle screw terminal for battery connection,left to it is for solar panel and the right one is for load.

Power Supply:

In my previous version the power supply for arduino was provided by a 9V battery.In this version the power is taken from the charging battery itself.The battery voltage is step down to 5V by a voltage regulator(LM7805).

Solder LM7805 voltage regulator near to the battery terminal.Then solder the electrolytic capacitors as per schematic.At this stage connect the battery to the screw terminal and check the voltage between pin 2 and 3 of LM7805.It should be near to 5V.

When I used a 6V battery the LM7805 works perfectly.But for 12V battery it heated up after some time.So I request to use a heat sink for it.

Efficient Power supply :

After few testing I found that the voltage regulator LM7805 is not the best way to power the arduino as it waste lots of power in the form heat.So I decide to change it by a DC DC buck converter which is highly efficient.If you plan to make this controller, I advice to use a buck converter rather than LM7805 voltage regulator.

Buck Converter Connection:

IN+ -------> BAT+

IN- --------> BAT-

OUT+ -----> 5V

OUT- -----> GND

Refer the above pictures.

You can buy it from eBay

Step 14: Mount the Arduino :

Cut 2 female header strips of 15 pins each.Place the nano board for reference.Insert the two headers according to the nano pin.Check it whether the nano board is perfect to fit into it.Then solder it back side.

Insert two rows of male header on both sides of nano borad for external connections.Then join the solder points between arduino pin and header pins.See the above picture.

Initially I forgot to add Vcc and GND headers.At this stage you can put headers with 4 to 5 pins for Vcc and GND.

As you can see I connected the voltage regulator 5V and GND to the nano 5V and GND by red and black wire.Later I removed it and soldered at the back side for better look of the board.

Step 15: Solder the Components

Before soldering the components make holes at corners for mounting.

Solder all the components as per schematic.

Apply heat sink to two MOSFETs as well as power diode.

Note: The power diode MBR2045 have two anode and one cathode.So short the two anode.

I used thick wire for power lines and ground and thin wires for signal.signal. Thick wire is mandatory as the controller is designed for higher current.

Step 16: Connect the Current Sensor

After connecting all the components solder two thick wire to the load mosfet's drain and upper terminal of load side fuse holder.Then connect these wires to the screw terminal provided in current sensor( ACS 712).

Step 17: Make the Indication and Temperature Sensor Panel

I have shown two led in my schematic.But I added a third led(bi color) for indicating the solar panel status in future.

Prepare small size perforated board as shown.Then make two holes (3.5mm) by drill on left and right( for mounting).

Insert the leds and solder it to the back side of the board.

Insert a 3 pins female header for temperature sensor and then solder it.

Solder 10 pins right angle header for external connection.

Now connect the RGB led anode terminal to the temperature sensor Vcc(pin-1).

Solder the cathode terminals of two bi color led.

Then join the solder points the leds terminal to the headers.You can paste a sticker with pin name for easy identifications.

Step 18: ​Connections for Charge Controller

Connect the Charge Controller to the Battery first, because this allows the Charge Controller to get calibrated to whether it is 6V or 12V system. Connect the negative terminal first and then positive. Connect the solar panel(negative first and then positive) At last connect the load.

The charge controller load terminal is suitable for only DC load.

How to run an AC Load ?

If you want to run AC appliances then you must need an inverter. Connect the inverter directly to the battery.See the above picture.

Step 19: Final Testing :

After making the main board and indication board connect the header with jumper wires(female-female)

Refer the schematic during this connection.Wrong connection may damage the circuits.So be care full in this stage.

Plug the usb cable to the arduino and then upload the code.Remove the usb cable.If you want to see the serial monitor then keep it connected.

Fuse Rating: In demo I have put a 5A fuse in the fuse holder.But in practical use, put a fuse with 120 to 125% of short circuit current.

Example :A 100W solar panel having Isc=6.32A needs a fuse 6.32x1.25 = 7.9 or 8A

How to test ?

I used a buck boost converter and black cloth to test the controller.The converter input terminals are connected to battery and the output is connected to the charge controller battery terminal.

Battery status :

Rotate the converter potentiometer by a screw driver to simulate different battery voltages.As the battery voltages change the corresponding led will turn off and turn on.

Note: During this process Solar panel should be disconnected or covered with a black cloth or card board.

Dawn/Dusk : To simulate dawn and dusk use a black cloth.

Night : Cover the solar panel entirely.

Day: Remove the cloth from the solar panel.

Transition : slow the remove or cover the cloth to adjust different solar panel voltages.

Load Control : According to the battery condition and dawn/dusk situation the load will turn on and off.

Temperature Compensation :

Hold the temperature sensor to increase the temperature and place any cold things like ice to decrease the temp.It will be immediately displayed on the LCD.

The compensated charge set point value can be seen on the serial monitor.

In the next step onward I will describe the making of enclosure for this charge controller.

Step 20: Mounting the Main Board:

Place the main board inside the enclosure.Mark the hole position by a pencil.

Then apply hot glue to the marking position.

Place the plastic base over the glue.

Then place the board over the base and screw the nuts.

Step 21: Make Space for LCD:

Mark the LCD size on the front cover of the enclosure.

Cut out the marked portion by using a dremel or any other cutting tool.After cutting finish it by using a hobby knife.

Step 22: Drill Holes:

Drill holes for mounting the LCD,Led indication panel,Reset button and external terminals

Step 23: Mount Everything:

After making holes mount the panels, 6 pin screw terminal and reset button.

Step 24: Connect the External 6 Pin Terminal :

For connecting the solar panel,battery and load a external 6pin screw terminal is used.

Connect the external terminal to the corresponding terminal of the main board.

Step 25: Connect the LCD, Indicator Panel and Reset Button :

Connect the indicator panel and LCD to the main board as per schematic.(Use female-female jumper wires)

One terminal of the reset button goes to RST of Arduino and other goes to GND.

After all connections.Close the front cover and screw it.

Step 26: Ideas and Planning

How to plot real time graphs ?

It is very interesting, if you can plot the serial monitor parameters (like battery and solar voltages) on a graph on your laptop screen.It can be done very easily, if you know little bit on Processing.

To know more you can refer Arduino and Processing ( Graph Example ).

How to save that data ?

This can be done easily by using SD card but this include more complexity and cost.To solve this I searched through internet and found a easy solution.You can save data in Excel sheets.

For details you can refer seeing-sensors-how-to-visualize-and-save-arduino-sensed-data

The above pictures downloaded from web.I attached to understand what I want to do and what you can do.

Future Planning :

1. Remote data logging via Ethernet or WiFi.

2. More powerful charging algorithm and load control

3.Adding a USB charging point for smart phone/tablets

Hope you enjoy my instructables.

Please suggest any improvements.Raise a comments if any mistakes or errors.

Follow me for more updates and new interesting projects.

Thanks :)

Tech Contest

Runner Up in the
Tech Contest

Microcontroller Contest

Runner Up in the
Microcontroller Contest

15 People Made This Project!

Recommendations

  • Tape Contest

    Tape Contest
  • Arduino Contest 2019

    Arduino Contest 2019
  • Trash to Treasure

    Trash to Treasure

763 Discussions

0
None
QasimI3The keyn

Reply 6 days ago

The direction of irf9540 is not right. change the direction according to data sheet

1
None
QasimI3

15 days ago

Can you plz send me a clear circuit diagram ???. Its great and i want to make it. Kindly send me the circuit diagram for this project.

2 replies
0
None
farmerkeithQasimI3

Reply 9 days ago

Hello Qasiml3, There is a link to the circuit diagram at the end of Step 2.
Keith

0
None
QasimI3farmerkeith

Reply 9 days ago

Thanks a lot for your reply. Yeah i found it 4 days ago

0
None
Warrior18

Question 23 days ago on Step 1

I've put together the circuit and ran the code you provided but my voltage values are way off at times. Is my ADC to blame or am I doing something wrong?

1 answer
0
None
farmerkeithWarrior18

Answer 9 days ago

Hello Warrior18, There are several possible explanation for wrong voltage readings. It is important for the correct functioning of the controller to have accurate readings. The key point in your question is the "at times". That is, how far off and does the error vary?
The usual problem is having resistors in the voltage dividers that are different from the specified values. It may just be the normal variation in value that occurs from manufacturing tolerances. This variation can be compensated by a small change in the software to calibrate the voltage readings using your multimeter as a reference.
The calibration settings are in the function "void read_data(void)" where you will see the nominal resistor values 20 and 120 (which is 100 plus 20). By modifying one or both of these numbers you should be able to get your Arduino readings to line up with your multimeter readings.
Keith

0
None
farmerkeithShyamS102

Answer 9 days ago

Hello ShyamS102, The display connection is not shown on the circuit diagram, which is provided by a link at the end of Step 2.
The display has 4 wires: Ground and 5V (for power) and two data connections SCL and SDA. SCL connects to the Arduino pin A5 and SDA connects to Arduino pin A4. If you can't work it out, please send another question.
Keith

0
None
shanmukhar2

22 days ago

What is cost of project

0
None
fonetainer

8 months ago

aim getting following error while uploading the code to Arduino nano

Arduino: 1.8.5 (Mac OS X), Board: "Arduino Nano, ATmega328P"

V2_Deba_168:91: error: 'POSITIVE' was not declared in this scope

LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE); // Set the LCD I2C address // In my case 0x27

^

/Users/paaker/Documents/Arduino/V2_Deba_168/V2_Deba_168.ino: In function 'void setup()':

V2_Deba_168:106: error: no matching function for call to 'LiquidCrystal_I2C::begin(int, int)'

lcd.begin(20, 4); // initialize the lcd for 16 chars 2 lines, turn on backlight

^

/Users/paaker/Documents/Arduino/V2_Deba_168/V2_Deba_168.ino:106:18: note: candidate is:

In file included from /Users/paaker/Documents/Arduino/V2_Deba_168/V2_Deba_168.ino:8:0:

/Users/paaker/Documents/Arduino/libraries/Arduino-LiquidCrystal-I2C-library-master/LiquidCrystal_I2C.h:76:7: note: void LiquidCrystal_I2C::begin()

void begin();

^

/Users/paaker/Documents/Arduino/libraries/Arduino-LiquidCrystal-I2C-library-master/LiquidCrystal_I2C.h:76:7: note: candidate expects 0 arguments, 2 provided

exit status 1

'POSITIVE' was not declared in this scope

avrdude: stk500_recv(): programmer is not responding

avrdude: stk500_getsync() attempt 7 of 10: not in sync: resp=0x00

avrdude: stk500_recv(): programmer is not responding

avrdude: stk500_getsync() attempt 8 of 10: not in sync: resp=0x00

avrdude: stk500_recv(): programmer is not responding

avrdude: stk500_getsync() attempt 9 of 10: not in sync: resp=0x00

avrdude: stk500_recv(): programmer is not responding

avrdude: stk500_getsync() attempt 10 of 10: not in sync: resp=0x00

Problem uploading to board. See http://www.arduino.cc/en/Guide/Troubleshooting#upload for suggestions.

Invalid library found in /Users/paaker/Documents/Arduino/libraries/LiquidCrystal_I2C: /Users/paaker/Documents/Arduino/libraries/LiquidCrystal_I2C

Invalid library found in /Users/paaker/Documents/Arduino/libraries/LiquidCrystal_I2C: /Users/paaker/Documents/Arduino/libraries/LiquidCrystal_I2C

This report would have more information with

"Show verbose output during compilation"

option enabled in File -> Preferences.

6 replies
0
None
farmerkeithfonetainer

Reply 7 months ago

Hi fonetainer, You seem to have a lot of problems with this software upload.

Are you able to upload a simple sketch to your Arduino? eg the Blink example in the standard distribution.

Once that is OK, you need to check what library (if any) you have for the LCD. It should be LiquidCrystal_I2C.h although there are several different versions of this library and some work better than others. You may need to change versions if it will not work with the one you have. However first just getting the loading correct and post your new error messages would be a good step.

Keith

0
None
fonetainerfarmerkeith

Reply 7 months ago

Hi Keith,

after very long fight I found some other codes has lcd address something different. I just copy it and past it. now code updated and I can see it on LCD.

aim still not connect the Arduino to Circuit and on the third row current it show minus values even watts also minus value.

0
None
mohammads272fonetainer

Reply 5 months ago

hi fontainer,
i have this problem
please send the new code

0
None
fonetainerfarmerkeith

Reply 7 months ago

Hi Keith,

yes some problem on software or code. I have try several other codes on same Arduino nano. its perfect working the lcd. even the Hello world code is work perfect.

in the original Debate 168 code has like this ,

LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE); // Set the LCD I2C address // In my case 0x27

once I try to upload it always say ( POSITIVE was not declared on this scope)

Then I change it to

LiquidCrystal_I2C lcd(0x27,20,4); // set the LCD address to 0x27 for a 16 chars and 2 line display

after change it I can upload the code to Arduino. app show Success: Done uploading.

but I can't see any difference on LCD. it still show Hello, World!

This is all done with Online Arduino editor.

if i try same code with my Desktop Arduino, aim getting following error,

Arduino: 1.8.5 (Mac OS X), Board: "Arduino Nano, ATmega328P"

/Users/paaker/Documents/Arduino/sketch_aug31c/sketch_aug31c.ino: In function 'void setup()':

sketch_aug31c:106: error: no matching function for call to 'LiquidCrystal_I2C::begin(int, int)'

lcd.begin(20,4); // initialize the lcd for 16 chars 2 lines, turn on backlight

^

/Users/paaker/Documents/Arduino/sketch_aug31c/sketch_aug31c.ino:106:15: note: candidate is:

In file included from /Users/paaker/Documents/Arduino/sketch_aug31c/sketch_aug31c.ino:8:0:

/Users/paaker/Documents/Arduino/libraries/LiquidCrystal-I2C/LiquidCrystal_I2C.h:76:7: note: void LiquidCrystal_I2C::begin()

void begin();

^

/Users/paaker/Documents/Arduino/libraries/LiquidCrystal-I2C/LiquidCrystal_I2C.h:76:7: note: candidate expects 0 arguments, 2 provided

exit status 1

no matching function for call to 'LiquidCrystal_I2C::begin(int, int)'

This report would have more information with

"Show verbose output during compilation"

option enabled in File -> Preferences.

Regards,

Descktop app.png
0
None
farmerkeithfonetainer

Reply 7 months ago

Hi fonetainer, I think the lcd library you are using has a problem. Maybe an error in the file download, or maybe a bad version. I suggest you delete the current one and reinstall it.

You can probably remove the "POSITIVE" from the function call without affecting how it works, but I think this is not your real problem, which is something to do with the library.

Keith

0
None
RyuKim

Question 2 months ago

Im going to this proyect pal. Im going to use 12V 40W solar panel, is it ok to use the same components or should i change a bit? i have TMP36, can i use it for this proyect?

Thanks

2 answers
1
None
farmerkeithRyuKim

Answer 6 weeks ago

Hi RyuKim, A 12V 40W panel should be fine without any component changes.
I believe you should be able to use a TMP36 as a direct replacement for the LM35.
Keith

0
None
RyuKimfarmerkeith

Reply 26 days ago

Hi again, sadly we don't own 12V40W solar panel, we have 20V40W solar panel, is a risk to connect the panel to the circuit? We are going to power up everything with a 12 volts battery. And for powering the arduino, can we use the voltage regulator (7805)? We should use Vout and the GND of the 7805 to power up the arduino?