# Canoe Flotation Chambers

6,968

40

3

I built two cedar strip canoes and taken each of them on week long wilderness adventures. One of the things I fear is having my canoe sink or scuttle if I ever capsize. I have never capsized, in one of these wood canoes at least, but I don’t know exactly how well these canoes will float. I should try intentionally capsizing someday to find out, but I’ve never really had a time when I wanted to do that. They are wood and should float, but I read once that a wood/fiberglass canoe will float but not very high on the surface when it is filled with water, unless it has some flotation attached or built in. So, as an extra measure of caution I decided to add flotation chambers to the bow and stern.

http://jimmar.hubpages.com/_3v4wkz561vqja/hub/Canoe-Flotation-Chambers

### Teacher Notes

Teachers! Did you use this instructable in your classroom?
Add a Teacher Note to share how you incorporated it into your lesson.

## Step 1:

Flotation chambers are a sealed compartment of air at the bow and stern ends of a canoe. They prevent the canoe from sinking if it becomes filled with water. My canoe is wood and will float but probably will not support weight of passengers when filled with water. Added flotation can be can be air bags as shown. I decided to make permanent chambers with hatches so they would also provide a small area for dry storage.

## Step 2:

WHERE TO START

Information from Transport Canada "Construction Standards for Small Vessels"

"Hull Design Requirements And Calculation Of Recommended Maximum Capacities For Vessels Not More Than 6 Metres In Length"

The swamped weight (Ws) of the vessel and permanently installed fittings, excluding the engine and engine related equipment, shall be determined as follows:

Ws = ∑ Whk + Kd . Wd + 0.69 . Wf

Where:

Ws = swamped weight in kilograms of vessel and fittings other than engine and engine related equipment

∑ Whk = Wh1k1 + Wh2k2 + Wh3k3... Wh1, Wh2, Wh3... = the dry weight in kilograms of various materials used in hull construction

k1, k2, k3... = a conversion factor applied to the weight of each piece of hull material (Wh), to convert the dry material (h) to an equivalent weight when submerged in fresh water as determined by Table 4-3

Kd = a conversion factor applied to the weight of deck and superstructure, to convert the dry material weight to an equivalent weight when submerged in fresh water as determined by Table 4-3 in this document.

Wd = weight of deck and superstructure in kilograms

Wf = weight in kilograms of permanent fittings not included in Wd The amount of buoyancy required (Wfl) for canoes shall be determined by the following formula:

Wfl = Ws + 0.85 . We + 0.55 . Wd + 0.1 . Wl

Where:

Ws = swamped weight of the canoe in kilograms

We = dry installed weight of the engine

Wd = dry weight of the battery in case of an electric motor

Wl = the maximum gross load in kilograms, less the weight of the installed engine and the battery.

The volume of buoyancy material (Vb) required in cubic metres shall be determined as follows:

Vb = Wfl / (1000 - 1.05 × Wb)

Where:

Wb = weight in kilograms of 1 m³ of buoyancy material used Wfl = as calculated in 4.4.1.4.3 or 4.4.1.4.4 of this document.

Estimating the flotation chamber volume needed for my canoe:

Canoe weight 55lbs/121Kg

20 lbs/44kg of fiber glass laminate with Specific Gravity = 1.5, k factor

35 lbs/77kg of cedar with a Specific Gravity = 0.48, k factor -1.080 kg

for deck = 0 kg

for fittings = 0 kg

Swamped weight = Ws = 44kg(0.33 k fact.) + 77kg(-1.08 k fact.) + 0 + 0 = (-68.6)

**slightly positive due to wood

Buoyancy Required = Wfl = (-68.6) + .85 ( 0 )+ .55(0) + .1(660)

**assume 2 – 150lb people(660kg) but weight in water is approx 1/9 actual body weight depending on density ;)

Note 0 kg for engine, 0 kg for battery Almost NEUTRAL BUOYANCY with 2 people in a swamped canoe so the canoe won’t really help you stay afloat if you are sitting in it filled with water.

Therefore assume it needs a buoyancy of 660kg Assume Wfl = 660

Then the volume required is: Wfl/1000 – 1.05(0)

**note: air is 0 weight VOLUME REQUIRED = 0.66 cubic meters or about 1000 cubic inches

Volume of my chambers is about (3 X 15 X 12) / 2 cu. In. = 270 cu. In. each.

Of course this is a crude estimate but this should provide about ½ the buoyancy needed for 2 people. Barely adequate, by my estimates but, better than it was without the chambers.

## Step 3:

Materials:

1 - Project Panels Birch Plywood (Common: 1/4 in. x 2 ft. x 4 ft.; Actual: 0.195 in. x 23.75 in. x 47.75 in.) - Home Depot - \$12.42

2 - 4” Seadog Polypropylene Screw-out Deck Plates – Black - Duckworks BBS - \$6.92

#8 x 3/4 in. Brass Phillips Flat-Head Drive Wood Screw (100-Piece) – Home Depot - \$7.98/100

Scrap 6oz. fiberglass cloth – left over from canoe build projects

Scrap 8 oz Carbon Fiber Cloth Fabric Plain Weave 3K - 20"W 17.00 – left over from kayak build projects

Polyurethane Sealant

Helmsman Spar Urethane spray

Double sided tape ½” Foam weather stripping

US Composites medium Epoxy Resin/hardener - left over from canoe build projects

## Step 4:

Make a template

I first made a template of the panels that would seal off the bow and stern from stiff cardboard. I rough cut an approximate shape of each panel and pressed them in, gradually cutting away pieces until the fit where I wanted. Then I traced the shapes onto the plywood and cut them out, slightly oversized, with a jig saw. Those were then fitted into each end by removing material where needed and beveling the edges. Once I was satisfied with the fit I traced the hatch covers onto the panels and cut the holes.

## Step 5:

fiberglass the panels for extra strength

The panels were then covered with epoxy then fiberglass cloth applied to the back and carbon fiber cloth to the front. I made sure to coat the edges of the panels and holes thoroughly with resin. Once the epoxy had cured I trimmed away cloth at the edges.

## Step 6:

Prepare the hull surface

Next I sanded away the varnish on the canoe where the panels would be set, then placed the panels and traced along their edges onto the sanded canoe surface. I removed the panels and applied a strip of double sided tape and ½” weather foam stripping about ¼” away from the marked line on the inside of where the chamber would eventually be. I figured this would provide a lip to help hold the panel in place while I sealed the edges and also help capture the sealant. I replaced the panels and held them in place with a small piece of wood taped to the floor of the canoe.

## Step 7:

Seal the compartment

To seal the edges I used a mixture of epoxy, sawdust, Aerosil-Cabosil (silica), and water putty powder to form a thick paste. Just epoxy thickened with wood sanding dust would work, I just had this stuff available. I added a little graphite powder to make it black so it matched the carbon fiber cloth. I pressed the mixture into the edge of the panels where they met the canoe surface and did my best to make a smooth fillet. I had to apply another batch once the first one had hardened and was sanded to smooth out the joints and be sure the compartment was sealed.

## Step 8:

Apply fiberglass cloth

I cut 3 inch wide strips of spare 4 ounce fiber glass cloth and applied them with resin/hardener epoxy mixture to the joint between the panel and the hull. Since the cloth does not easily bend around the curve of the hull and stay flat, I used four over lapping pieces. The area under the deck was the most difficult and I found it easier to apply while sitting under the canoe as it rested on sawhorses upside down. I applied one coat of epoxy to fill the weave then another once it started to cure and firm up. My biggest concern was that the compartment be water tight. Once the epoxy had cured thoroughly, I sanded the surface to feather in the edges of the cloth and varnished the panel and previously sanded portions of the hull with Helmsman semi-gloss spar urethane.

## Step 9:

Varnish

The epoxy is sensitive to UV light. After much exposure it can break down and become weakened. It needs to be covered with an exterior spar varnish that contains UV blockers. I used several coats, probably about eight, of Helmsman Spar Urethane spray- semi gloss.

## Step 10:

Install the hatches

Next I placed the hatch covers in the opening and marked the location of the screw holes. On the reverse side of the cover rim I put a generous bead of polyurethane roofing sealant. I used this because I had a tube left over from when I installed my sauna chimney. I figured it would be good because it is weather proof. It's sticky and messy to work with, a better choice would probably have been some silicone sealant. I kept the hatch covers screwed into their frames to prevent the frame from twisting when I screwed it to the panel with #10 - 1/2 brass screws. I was afraid the opening may become distorted so much that I could not screw in the covers. A bit of the sealant pushed out, letting me know the seal would be good. I wiped off the excess but because this stuff is so sticky that was not clean.

This was not the best work I've done in terms of appearance, but, it is functional, sturdy, water-proof, and provides a small amount of dry storage.

Participated in the
Safety Challenge

Participated in the
Outside Contest

## Recommendations

• ### Solar Class

15,327 Enrolled

## 3 Discussions

Informative concept, I appreciate the post.

I’m a fat fisherman
and a poor swimmer.

I never thought if I rolled out of my canoe and had to dog

So, Once I start scratching at the wood underbelly for
stability. It will sink a little and I’ll still be dog paddling?

I’m definitely looking into a Flotation Chamber
or a formed
foam block.

Well done and a great idea. But would it not be easier and safer to have a large (formed) foam block in each end (it could never fill with water). Now, if you also want to use the space for dry storage then your idea is better of course.