Cordless Power Tool Conversion 18VDC to 120/240VAC




Necessity is truly the mother of all inventions....and my case was no different.  About a year ago, I found myself with a dead battery for my Ryobi 18V cordless tools and no means of getting a new one as I was working overseas. So I came up with a setup to run my tools off AC (household current) safely and with no worries of my tools dying halfway into the job.

Now I enjoy all the benefits of battery operated power tools just as much as the next guy....They're convenient, flexible, and you can usually get quite an assortment of tools that run off the same battery.  Then the inevitable get the dreaded blinking set of lights on your charger and the batteries die out almost instantly. Your faced with two options.....Drop $50-$100 on a new set of batteries or try rebuilding them yourself.  Neither one of those two options appealed to me nor did I have the time to order the parts from overseas.  As anyone in my situation might do, I scoured the internet for an alternative solution.  I found guys connecting car batteries to their drill...ummmm no thanks.  Then I came across the idea of using an old laptop power supply in place of the battery.....The voltage seemed right, but alas the wattage was too small.  Even at 180 watts, the biggest pc power supplies couldn't provide enough to overcome the start-up current of my battery operated circular saw or angle grinder. 

The principal of the pc power supply was sound, I just needed something bigger.  After a little more research I found that the common everyday laptop power supply is what they call a "switch power supply".   Turns out, switching power supplies are very common everywhere in the world, affordable and come in a variety of voltage and power ratings... I eventually chose a 350w AC/DC power supply produced by a reputable company called Meanwell with a voltage range of 15-18volts DC.

Wiring of the power supply to a dead battery is very straightforward, but the following instructable goes through the details step-by-step.

Teacher Notes

Teachers! Did you use this instructable in your classroom?
Add a Teacher Note to share how you incorporated it into your lesson.

Step 1: Electrical Warning

Before starting please understand you have a power supply capable of discharging 20Amps.  Although the setup is fairly simple, if you are not comfortable working with electronics, please seek professional help on this Instructable.

The cable exiting the battery and connector of the DC outlet from the power supply are made from an standard 120VAC wall plug.  The plug and cable was selected for ease of availability and to allow me to use a standard extension cable if needed.  For my case, I will be the only individual using this setup.

Under no circumstances would I plug an AC powered appliance, tool or otherwise, into this power supply.  If you choose to make this setup please think ahead who might be using it.  If there is the remote possibility of someone not trained to using this setup, I would suggest using a different type of connector and cable.  Something more unique but capable of handling the amps. 

One recommended cable is that of a twist lock generator plug. 

Step 2: Tools Needed

• (1) dead 18v Ryobi battery
• (1) 15v 350w AC/DC switching power supply
• (1) IEC C14 electrical receptacle (for incoming AC power)
• (1) standard 120vac receptacle to be used as the DC output or a twist-lock generator receptacle
• (1) computer power cable (has the mating connector for the C14 receptacle
• (1) 16-18awg extension cord (male connector is needed or a male twist-lock generator plug)
• (1) small toolbox (big enough for the power supply and to store the battery)....a 50cal ammo can works really well too.

• small Philips screwdriver
• needle nose pliers
• wire cutters
• hot glue gun
• 2 part epoxy
• soldering iron
• razor blade
• hacksaw blade
• drill
• multimeter

Step 3: Gutting the Battery

1. Using the Philips screwdriver, remove the 6 screws at the base of the battery (special thanks to my lovely 5 year old)
2. Separate the two halves of the housing and pull out the battery pack
a. Save the (2) yellow square buttons and the mating steel spring
3. Cut the leads from the battery to the terminal block
4. Save the plastic terminal block and the positive (+) and negative (-) terminal strips

Step 4: Don't Mind the Wire..."doctor's Orders"

1. Using heavy gauge power cord (16 awg) cut off the female receptacle end.  The length of the cord is up to you.  Remember this cord is going to be connected up to your power supply, but you can always use an extension cord if your tool will be far from the power supply. I find 3-5 ft of cord is sufficient.
2. Routing the wire....There are 2 options

Option A: Drill a hole in the battery cover the diameter of the outer jacket of the wire.  The location of the hole is your choice.  You can even add a rubber boot over the wire as it exits the battery cover to act as a strain-relief.

Option B: Install a swivel adapter I've designed and will be making available on in the near future.  This swivel adapter allows the cable to pivot from the front of the battery pack to the rear anywhere within the 180deg angle.  The remainder of this tutorial will be using the swivel adapter.  I've also uploaded the stl files onto under the title of "18V Battery Swivel Cable Lock" if you have access to a 3D printer.

3. Cut back about 6" of the outer jacket insulation from the cable
4. Strip and tin about 1/4" of the leads.
5. The swivel adapter consists of (3) parts
    (2) clamp halves
    (1) swivel base
6. Make sure the clamp halves can completely encircle the OD of the outer jacket of the cable
7. Sand the ID of the clamp halves until you get a snug fit around the jacket

Step 5: Start Cutting

1. Mark out a 1/2" wide path on the bottom of the battery cover to be cut off.
2. Using a 1/8" bit, drill a series of holes along the path long enough to get a hacksaw blade to continue the cut.
3. There will be two standoffs from the original screws on the inside of the bottom cover along the path of where you will be cutting.....cut them off.

Step 6: Break Out the Epoxy

1. Feed the wire through the slot of the bottom cover
2. Using some "Super Glue", attach the clamp halves to the edge of the outer jacket
3. Assemble the swivel adapter to the clamp halves, feeding the stripped wires through the small slot of the swivel adapter
4. Epoxy the swivel adapter to the inside of the bottom cover

Step 7: Fire Up the Soldering Gun

1. Cut off about 4" of the exposed 8" of unsheathed wire
2.  Strip the about 1/4" of insulation from the wires and solder them to the positive and negative terminal strips (see the attached image for the polarity of the cable)
3. Re-assemble the terminal block and install it into the top half of the battery cover
4. Use a hot glue gun to fill the cavity where the terminal block sits
5. Attach wires from the top half cover to the bottom half cover using wire nuts or cable lugs.
6. Reassemble the top and bottom halves of the battery cover using 4 of the 6 screws.  Remember to install the yellow side buttons and springs.

Step 8: Box It Up

Now its time to make the housing for the power supply. 
1. Arrange the power supply in the box to allow room for the battery adapter and the AC inlet plug and the DC outlet plug
2. Make a template for the four M4x6 mounting screws of the power supply to transfer the location onto the box.  Drill holes in the box to mount the power supply.  But don't mount it just yet.

Step 9: Laying Out the Connectors

1. Locate where you want to mount the incoming AC and outgoing DC receptacles on the box.  I prefer mounting one at each end and dressing the wires under the power supply.
2. Solder (3) 12" 16awg gauge leads to the IEC C14 electrical receptacle for incoming AC power on the positive, neutral and ground leads.
3. Solder (2) 12" 16awg leads to the standard 120vac receptacle for outgoing DC power on the positive and negative leads.
4. Make a couple of templates of the receptacle profile and transfer the outline to the box.  Using a sharp utility knife, make several passes until you cut out the holes for the two receptacles.
5. Attach the receptacles either by screw, glue or snap fit; whichever it was designed for
6. Apply some hot glue over the leads on the receptacle to protect the exposed terminals

Step 10: Final Connections

1. Attached the leads of the connectors to the indicated leads of the power supply.
2. Install the plastic protective cover over the terminals of the power supply
3. Make sure the selector switch on the power supply is set for your country's voltage, either 120 or 240VAC.
4. Plug in your portable power supply using a standard computer cable for the AC receptacle.
5. Plug in the battery adapter into the DC receptacle.
6. Turn on the power supply with the switch located on the IEC C14 electrical receptacle
7. Using a multimeter, check the polarity of the battery terminals and adjust the pot on the power supply (small plastic philips screw to the far left of all the terminal connectors) to above 18VDC.
8. Once confirmed everything is reading correctly, mount the power supply within the box and dress the wires neatly under or behind it.
9. Plug in your battery adapter into your favorite 18V CORDLESS tool and enjoy continuous use.

UP! Contest

Participated in the
UP! Contest

2 People Made This Project!


  • Assistive Tech Contest

    Assistive Tech Contest
  • Reuse Contest

    Reuse Contest
  • Made with Math Contest

    Made with Math Contest

158 Discussions


13 days ago

Not sure if original poster checks this from time to time, but I'm curious if it is likely/possible that the new Hybrid corded/cordless line of Ryobi just use some sort of power converter in their tools or if the corded part has a specific amperage? Basically, do you think you could take apart a $30 Ryobi Hybrid light and use the components from the AC plug side as a universal power converter for all your tools?


1 year ago

Was it worth it? I use Makita and 2 battery's. Never gone dead yet. You've started on wrong foot. Throw all that Ryobi garbage in the creek. Initial outlay expensive but tool pays for itself in trouble free performance.


4 replies

Reply 13 days ago

I understand that with you being a Makita salesman, you feel that
convincing people Makita rechargeable batteries last forever, and also
attempting to dissuade people from looking for ways to avoid buying
endless replacement rechargeable batteries over time seems like a
double-whammy and good use of your time. I think it is pretty
transparent, but maybe that is just me. Especially now that actual
Hybrids battery/corded tools are becoming common and illustrating why
this Instructables poster made his own universal hybrid converter. You
would probably argue repurchase hybrid versions of all your old tools to
help your sales I assume.


Reply 1 year ago

Wow, Zapp! You came back to drop a comment bomb on an Instructable you commented on 5 years ago??

Maybe you should have just re-read his reply to your "...huge waste of time." comment from 5 years ago. Unless you're just some kind of tool snob, Ryobi tools will do the job without a huge outlay of cash. In this case, he already had the tools for a job that had a high risk of being "borrowed". The tools worked great for his purposes, but the old NiCads had lost their will to live. For a few bucks, he made a 120v adapter, and the tools live again.

Sure, not the solution I would have used. I would have just bought a couple of lithium-ion replacements and a new charger. $50, and you've got usable cordless tools, again. However, another commenter made the point that even a 5ah in his Makita wasn't enough for his purposes, and that a 120v conversion fit the bill.

Different people have different needs. No need to be rude when their application or solution doesn't fit yours.


Reply 1 year ago

If a Makita wouldn't accomplish “commentators” task, I'll guarantee he was abusing it. A 5ah battery will last longer but peak current is essentially the same.

love ya see ya in 5 years.


Reply 1 year ago

Sorry if I appeared rude. In my defense I made my living with my tools and a Masters Electrical Certification. I began with Dewalt, when Lithium appeared in the newest Mikita equipment I destroyed the Dewalt stuff, purchased an 18 volt Makita and never looked back. My youngest son has the original bundle as I upgraded when times were good and all I can say is that the Good Providence which allowed me to avoid run of the equipment yes, spoiled me rotten. However to go to the extremes required when a corded, name brand drill can be had for $20:00 is just dumb as I see it and I've seen terrible things put upon the “creative”, though inexperienced craftsmen everybody seems to be nowadays. Contrary to popular belief, Electrity will actually kill you. Throw a Ryobi in the opera and things will mystify and surprise. I checked Instructables for the 1st time in, by your estimate, 5years. I apologize profusely as I'm old and opinionated and anyone whose skills require only Ryobi precision deserves anything that may become them. To conclude, my 18 volt Makita performed every task I put to it, the 2 small lithium packs never had one Sudden Death amongst them, they truly charged in 15 minutes and I remember purchasing at most 4 replacements 2of which I passed to my Son (a lighting engineer at the largest theatrical co. In Savannah). I believe his only problems involved thieves who certainly no what to steal for maximum return and I can assure you their spoils are rarely that ghastly Ryobi yellow is it? Whatever. Sorry if I offended anyone as I never intended too.



Reply 13 days ago

I understand that with you being a Makita salesman, you feel that convincing people Makita rechargeable batteries last forever, and also attempting to dissuade people from looking for ways to avoid buying endless replacement rechargeable batteries over time seems like a double-whammy and good use of your time. I think it is pretty transparent, but maybe that is just me. Especially now that actual Hybrids battery/corded tools are becoming common and illustrating why this Instructables poster made his own universal hybrid converter. You would probably argue repurchase hybrid versions of all your old tools to help your sales I assume.


Reply 6 years ago on Introduction

Hey Zapp,
You have a right to your opinion and I respect that, but to each their own. I'm sure there are guys out there that can make use of what I've instructed and that's why I did it. My needs overseas dictated I have a set of cordless tools. You might not be aware of this little fact, but consumers in the U.S. are privileged when it comes to availability and price of products. In southeast Asia where I'm currently working, you can't get a decent set of 18v tools for less than $1000!!! So I when I needed tools I brought them from the U.S. and I didn't want to drop a wad of $$$ on something that might get stolen on the job site. When the battery died, I improvised. Enough said.

I value and appreciate good well made tools just as much as the next guy, but my Dewalts, Porter Cables and yes....Milwakees stay home.


Reply 6 years ago on Introduction

I appreciate your reasoning and well know the sinking feeling when quality tools grow feet and are never seen again. $1000.00 for a rechargeable Lithium set-up would reduce me to corded tools also. The corded tools do have an appreciable increase in torque and speed over battery operated though and in your situation I believe, given the cost, I would stick with corded exclusively and invest in heavy duty extension cords. If job site theft is a main concern when purchasing, choosing, and comparing available tools I believe I would locate workmates a tad more respectful of others tools. There's nothing I hate more than a derelict attempting to sell stolen tools on a jobsite for 1/10 what they actually sell for. I'm adverse to the cost of the required XFMR to supply needed power for cordless tools. I have been fortunate that the majority of jobs I've worked on were inhabited by person's aware that my tools are my living and have respected that fact . Sorry If I offended yet I still feel converting cordless to corded kind of defeats the original purpose, convenience, and increase in utility of the new cordless offerings. In the States availability of High end cordless tool's is evidently 1/2 what you are paying in your locale giving great credence to your solution. I must insert I've a Milwaukee Magnum 1/2" Holeshooter which is 20 years old and will outlive every cordless I've ever purchased as will the Sawzall, Circular saw, etc., Eliminating the umbilical cord though will always increase productivity while decreasing frustrations to an extent making cordless indefensible when power isn't available. You would be amazed the situations absent of mains power making cordless necessary. Good things to be said for both but in my mind if theft dictates selection of needed tool I once again thank my lucky star's for the market I labor in. I will forever have my original corded Milwaukee's purchased when I realized the offerings of local Electrical contractors consisted of the cheapest tools they could find due to the conscienceless, thieving, tool less electricians (?) they insisted on hiring. When the manufacturer's developed cordless my 1st purchase of a Dewalt 14.4 volt drill, though Ni-cad, became my constant companion and now you would have a fight if you attempted confiscation of my newest Li-ion cordless tools. I'll never relinquish my corded tools as there's still jo


Reply 1 year ago

I had lots of similar issues with the theft of my tools, and when I " frank-en-tooled my saw saw, I can say, that a mangled, black taped, funny looking thing that I ended up with, is still here and happy with me today
. Because when a thief is looking at what to steal, a home made modified saw saw just isn't at the top of the list of what a pawn shop or other similar place of business is going to be interested VB OK n buyng.. so an ugly tool is an in-depth stolen tool if you ask me


jobs they excel at (18" ships augers!), things only the outrageously priced and over the top 36 volt cordless are evidently meant for as well a stroking the Male ego. Sorry if I offended and good luck with those "footed" tools.


Reply 2 years ago

It should be mentioned that what you wrote 4 years ago is not necessarily true today. Today you can get 3rd party battery packs, inexpensively shipped from Chinese merchants to (almost) anywhere in the world, for the vast majority of major brand cordless tools.


Reply 6 years ago on Introduction

Sorry for the long winded reply & if I offended. I have been wiped out of tools several times in a 30 year career but if I can't use my tools for the purpose I purchased them they are waste of money. I have worked for contractors using my tools since the 1st theft and refusal of my employer at the time to replace them. I continue to supply my own tools with my employer supplying consumables. On the occasion I was relieved of a tool the cost of consumables increases accordingly. Maybe underhanded but have had no complaints from employers. Their insurance may not replace lost personal tools but they haven't seemed to mind replacing said tools through unexplained increases in consumable's cost even when my drill bit, blade purchases, etc. briefly rise to match cost of stolen tools. I guess I'm fortunate to be employed by persons appreciative of the fact I always have the required tool available without searching an entire job-site. I still believe purchase of cheap (Ryobi) tools beats the adaptation of PWM power supplies of adequate output to power a cordless tool. Please accept my apology,


2 months ago

I am in the middle of gathering all the parts I need to make this myself (Thanks to someone I know who also owns Ryobi One+ Tools and left two of his batteries in the rain).

I plan on making a few small changes to this design.
1) not using a mains outlet for the 18V side of the device, as I can just see someone borrowing my tools without asking and doing something stupid.
2) I will be putting the power supply in the bottom half of a tool box, with ventilation holes etc setup (and maybe an extra fan) and then putting a plastic barrier over the top of this, so I can put the hacked battery and the cables into the top of the box, close it up and store it all away nicely until I need it.

To the people who are questioning why you would do this instead of either buying more batteries, or just buying corded tools: I want to make this because I love the convenience of cordless tools, which I can use both in the workshop, but also while I am out and about, but sometimes while I am in the workshop I want to use a high drain tool such as my circular saw, or my random orbital sander, over a longer period of time. I don't want to be constantly swapping out and charging batteries in this situation, and I don't want to have to purchase another tool which does the same job, and have to store it as well (I have limited space).
Plus I can't remember the number of times I have run out of charged up batteries with just a small amount of work left to complete.
This solution would be perfect for me!


Question 1 year ago

Also. If I get a PSU with too much amperage will it hurt my tools?

2 answers

Answer 9 months ago

The tool determines the current, you just need to make sure your PSU can handle supplying enough current. There's no way to give a tool or any electrical load too much current. the PSU supplies the voltage, but the tool pulls the current. Therefore, you should always make a PSU that can handle more current than you'll think you need, you can't damage the tool by using a PSU with a higher current rating. Beware though that your tools might have more kick than you're used to, so you may want to use some fuses or current limiting switches for safety. Also make sure the circuit in your home that you are plugging your tools into can handle the current or you may trip your circuit breaker.


Answer 1 year ago

Hey TadL1, sorry for the late response. What power supply (PSU) did you use to make your setup? A larger supply should not hurt your tools, although I've never had to use more than a 20A supply.


Question 1 year ago on Step 10

so why are you using such a large power supply. The battery is rated at 18V & 48 Watts, so thats about 3 amps top. Are you not concerned with burning out the motor, OR does the motor only take what it needs?