"No Fall" Toy Mechanism

5,594

90

10

Introduction: "No Fall" Toy Mechanism

About: The more mistakes I make, the more knowledge I gain.

Reminiscent of the battery and windup powered "no fall" toys of my childhood, I designed this "No Fall Toy Mechanism" to illustrate how the battery and windup powered "no fall" toys I was gifted over fifty years ago avoided falling off the edge of a tabletop, countertop, or other elevated surface, without the use of micro controllers, servos and / or electronic sensors.

While designing my version of this mechanism using the computational features of Autodesk Fusion 360 for balance (e.g. "Center of Mass") and a scientific calculator for geometry, I was truly amazed by the skills and talents of the mechanical engineers who designed mechanisms such as this using drafting machines and slide rules over half a century ago.

In the demonstration video, I let the mechanism loose on an 8 1/2" by 11" (the size of "standard" notebook paper) by 1/2" thick piece of untreated MDF. As can be seen in the video, using only electro mechanical techniques, when the mechanism approaches the edge of the MDF the conical front wheels allow the front yoke to pivot thus lowering the chassis front to the point where the rotation gear contacts the MDF surface. When this occurs, the mechanism rotates clockwise (as viewed from the top), steers away from the MDF edge, then continues on a new path to the next edge.

As usual, I probably forgot a file or two or who knows what else, so if you have any questions, please do not hesitate to ask as I do make plenty of mistakes.

One final note, I receive no compensation in any form whatsoever for the design, equipment, parts and/or materials used in this mechanism.

Designed using Autodesk Fusion 360, sliced using Cura 4.4.0, and printed in PLA on an Ultimaker 3 Extended and an Ultimaker S5.

Supplies:

Supplies I used in this mechanism include:

  • Solder.
  • Double sided tape.

Teacher Notes

Teachers! Did you use this instructable in your classroom?
Add a Teacher Note to share how you incorporated it into your lesson.

Step 1: Parts.

I acquired the following parts for this mechanism:

  • One 3.7vdc 100ma Lithium Battery (https://www.adafruit.com/product/1570).
  • One JST PH 2-Pin Cable (https://www.adafruit.com/product/3814).
  • One N20 6VDC 150RPM gear motor (on line).
  • Three R19 O-Rings (23.5mm I.D., 3.5mm section, local hardware store).

You will also need a suitable battery charger.

I 3D printed the following parts in PLA at .15mm layer height with 20% infill and no supports:

  • Two "Axle, Wheel, Front.stl".
  • One "Axle, Wheel, Right Rear.stl".
  • One "Axle, Wheel, Rotate.stl".
  • One "Axle, Yoke.stl".
  • One "Gear, Crown, Axle (1.5m12t).stl".
  • One "Gear, Motor (2.2m10t).stl".
  • Two "Wheel, Front.stl".
  • One "Wheel, Left Rear.stl".
  • One "Wheel, Right Rear.stl".
  • One "Wheel, Rotate (1.5m12t).stl".
  • One "Yoke.stl".

Prior to assembly, test fit and trim, file, drill, sand, etc. all parts as necessary for smooth movement of moving surfaces, and tight fit for non moving surfaces. Depending on you printer, your printer settings and the colors you chose, more or less trimming, filing, drilling and/or sanding may be required. Carefully file all edges that contacted the build plate to make absolutely certain that all build plate "ooze" is removed and that all edges are smooth. I used small jewelers files and plenty of patience to perform this step.

This mechanism also uses threaded assembly, so I used a tap and die set (6mm by 1) for thread cleaning.

Step 2: Assembly.

To assemble the mechanism, I performed the following steps:

  • Slipped an o-ring onto "Wheel, Left Rear.stl", "Wheel, Right Rear.stl" and "Wheel, Rotate (1.5m12t).stl".
  • Positioned the rotate wheel assembly in "Chassis.stl" then secured in place with "Axle, Wheel, Rotate.stl" making sure it rotated freely.
  • Soldered the JST connector to the motor such that with power applied, the motor rotates clockwise when viewed from the motor shaft end.
  • Pressed the motor assembly into the motor housing in the chassis assembly such that the motor was flush with the motor housing left end.
  • Pressed "Gear, Motor (2.2m10t).stl" onto the motor shaft.
  • Positioned "Gear, Crown, Axle (1.5m12t).stl" in the base assembly then secured in place by press fitting "Wheel, Left Rear.stl" into the gear, then carefully aligned the motor gear with the wheel gear.
  • Secured "Wheel, Right Rear.stl" onto the chassis assembly using "Axle, Wheel, Right Rear.stl".
  • Secured one "Wheel, Front.stl" to "Yoke.stl" using one "Axle, Wheel, Front.stl", then repeated the process with the remaining front wheel and axle.
  • Secured the yoke assembly to the front of the chassis assembly using "Axle, Yoke.stl".
  • Secured the LiPo battery to the chassis using double sided tape.

To test the mechanism, I placed it on an 8 1/2" by 11" by 1/2" thick piece of MDF, connected the battery to the motor, and off it went!

And that's how I 3D printed and assembled "No Fall" Toy Mechanism.

I hope you enjoy it!

STEM Contest

This is an entry in the
STEM Contest

1 Person Made This Project!

Recommendations

  • Magnets Challenge

    Magnets Challenge
  • Snow Challenge

    Snow Challenge
  • Wearables Contest

    Wearables Contest

10 Discussions

0
NeilRG
NeilRG

1 day ago

Greg,
I dare say we may be contemporaries. I do recall toys like these, made of cleverly crafted tin plate. If you recognize my "handle" you know I've been a fan of your work for some time.
When I viewed the video clip, I thought, Greg's following the Rodney Brooks school of subsumption electronics, where in no micro controllers are uses but a few discrete transistor circuits mimic a few neurons.
Delightful project. I have not yet set up the two large format printers i just received, but this is on my list.
Maybe you should learn to write backward in brown ink in Italian..............

0
gzumwalt
gzumwalt

Reply 13 hours ago

Hi NeilRG,

"Contemporaries" is a very kind description of my status as simply being old, but I thank you very much!

I also thank you for being a fan, but I'm simply recreating, in 3D printed format, mechanisms from the past (sometimes the far past as well as sometimes the near past) that intrigued me so much that I wished to honor those far more talented than I by reproducing their work in 3D printed form for others to study, learn and enjoy.

And regarding mirror writing, I'll leave that to the "expert"... :)

Many thanks again,

Greg

0
questnetdad
questnetdad

1 day ago

Where can I buy, battery charger for this 3.7vdc 100ma Lithium Battery ?

0
gzumwalt
gzumwalt

Reply 14 hours ago

1
beqwaam
beqwaam

19 days ago

I love the inventiveness!!

0
gzumwalt
gzumwalt

Reply 19 days ago

Thank you beqwaam, I'm glad you enjoyed it!

Greg

1
randofo
randofo

19 days ago

Wow. So cool. When I get some free time I'm going to try making this.

0
gzumwalt
gzumwalt

Reply 19 days ago

Hi randofo!

Thank you so very much, I'm glad you enjoyed it!

It's a fairly easy and reliable print and assembly, so I hope you do make it!

Greg

0
gzumwalt
gzumwalt

Reply 20 days ago

Thank you very much!

Greg