Oscilloscope Arduino-Processing




Oscilloscope is a device that allows us to see graphically the electrical signal.

If you want a cheap oscilloscope to learn what it is or to play with, follow the steps below:

Teacher Notes

Teachers! Did you use this instructable in your classroom?
Add a Teacher Note to share how you incorporated it into your lesson.

Step 1: Have an Arduino Uno

The price of Arduino Uno is around $ 20 in internet stores.

Step 2: Install the Arduino IDE and TimerOne.h Library

  1. First, if you do not already have the Arduino IDE installed, install it from the site Arduino: click here
  2. Install the "TimerOne.h" library for the Arduino IDE, following the steps bellow
    • In the Arduino program click on "Sketch" (see the picture)
    • "Include Library ..."
    • "Manage Libraries ..."
    • On the line "Type: 'all' Topic: 'all'" has a blank search field , type "TimerOne".
    • (Information about the library will appear )
    • click over that text and the "Install" button will appear.
    • click "Install"
    • Restart the program

Step 3: Download Arduino Program and Upload It to Arduino

  1. Download and unzip the Arduino program from this link: (oscilloscope_arduino.ino)
  2. Connect the Arduino to the computer via USB port
  3. Run the Arduino IDE;
  4. Open the downloaded program "oscilloscope_arduino.ino"
  5. Adjust the COM port correctly (see picture)
  6. Upload the program to Arduino.

Step 4: Download the Oscilloscope Processing Program

  1. Download and unzip the Processing program to run on the computer. Choose the correct one below:
  2. Execute the Processing file (ex: Windows 64 bits => oscilloscope_4ch.exe)
    • Obs: lib\ folder is important, do not delete it
    • Java 8 needs to be installed

Step 5: If Oscilloscope_4ch.exe Doesn't Work...

If oscilloscope_4ch.exe doesn't work for any reason:

  1. Install the Processing IDE.
  2. Download and unzip the Processing source oscilloscope program
  3. Run Processing IDE and open the oscilloscope source program
  4. Execute the program clicking on the triangle icon

Step 6: Configure Serial Port to Connect Oscilloscope Program With Arduino

  1. You already have the oscilloscope program running and the Arduino connected to the computer by USB port. Now you have to connect to each other by "serial".
  2. In the "Configurar a serial" (Configure the Serial) box, click "select serial" until the COM where the Arduino is connected appears.(if it did not appear, click "refresh" to update)
  3. Click "select speed" until the speed 115200 appears.
  4. Click "off" to switch to "on"
  5. If everything is correct, the oscilloscope will show the 4 channels [A0 (ch-0), A1 (ch-1), A2 (ch-2) and A3 (ch-3)]
    obs: if nothing is connected you will see a noise.

Step 7: Connect the Output (~10) to Input (A0) and (~9) to (A1)

  • With wires connect the Arduino's digital output (~10) to analog input (A0) and digital output (~9) to input (A1).

You will see appear a signal like the picture.
The out (~9) and (~10) are generated by the "Ger.Sinal" box:
(~9) is PWM of 10Hz (T = 100ms) with 25% ON.
(~10) is a square of period 2T (200ms)

  • You can adjust the values on that box dragging the edge or clicking around the control.

Step 8: Tips

  1. Click "Trigger" at the Ch-0 (red) to stabilish the signals.
  2. To not read the signals of Ch-2 and Ch-3, click on the names "Ch-2" and Ch-3 ".
  3. To see the XY (Lissajous figures), click on the name "XYZ"
  4. To detect the frequencies, click on "detect freq."
  5. To measure voltage and time/frequency, click on "medir" (measure) of the desired channel then click on a point on the graph and drag to the other desired point.
  6. To change the dial control value click between vertical lines or drag the edge indicated by the triangles. (see picture)
  7. There is so much more! Explore!

Step 9: Aplication: Detecting Flash Frequency

You can find out the frequency that the flashlight is blinking using a LDR and a resistor (see the picture)

Step 10: Application: Detecting RPM of Fan

To find out the RPM of a fan use the circuit with LDR, resistor and a flashlight (not blinking).

Using the frequency value shown by the oscilloscope, apply the formula of the picture.

Step 11: Application: Analysing the Remote Control Signal

You can see the IR signal from remote control using the phototransistor TIL78.

Make the circuit of the picture, then follow the steps bellow:

  1. Adjust "dt" to 2ms (see all signal) or 100us (see details)
  2. Turn ch-0 trigger ON
  3. Increase level of trigger tension
  4. Click "UMA" (one): oscilloscope will stay waitting for the signal
  5. Press any remote control key directing it to TIL-78
  6. Analyse the graphic

Step 12: Application: Testing Components or Devices

We can use the oscilloscope to test electronic components or devices.

In this example we will test the little joystick for Arduino.

    1. Make the circuit shown in the picture.
    2. Connect the oscilloscope program to Arduino (configuring the Serial Port box)
    3. Click on "fluxo" (flow) so the Arduino sends each point right after reading.
    4. Adjust "dt" to 100ms to have a slow reading.
    5. Turn off the "ch-3" clicking over the name
    6. Adjust "v/div" to 5 (pressing the "shift" key to adjust all channels simultaneously)
    7. Change the ch-0 to up, moving the little left triangle (pressing the "shift" key)
    8. Turn on the XYZ channel and drag the "v/div", adjusting it to fill the free space.
    9. Move the joystick to all directions and press the button some times.
    10. See the curves.

    Step 13: Measure Resistors and Capacitors

    The "medir res./cap." (measure res./cap.) box is for measuring values of resistors and capacitors, but it will only work if you make the circuit of the picture.

    That function has the hability to discover by itself if the component connected is a capacitor or a resistor, and to choose the better result using 3 scales (low, middle or high values)

    Step 14: Do You Want More Fun?

    You can download the entire project directly from the GitHub site clicking here

    Watch the video on Youtube (turn on closecaption and translate to english!)

    Please, let me know if you liked that project or if you had any trouble to follow the steps.

    I will apreciate any help to develop that project. Programmers, users, curious, dreammers, etc.., will be welcome! ;)

    9 People Made This Project!


    • Made with Math Contest

      Made with Math Contest
    • Multi-Discipline Contest

      Multi-Discipline Contest
    • Robotics Contest

      Robotics Contest

    46 Discussions


    1 year ago

    Hi Rogerio, congratulations for the very good job!

    A question: what are the timing limitations? I mean, with a faster CPU (i.e. NodeMCU@160Mhz) what results could I expect in terms of frequency reading?



    6 replies

    Reply 1 year ago

    Hi Fabio,
    I am happy you are interested to upgrade the CPU. I stopped with the Oscilloscope project! ;)

    But I am sure that if you use a faster microcontroller you can read high frequencys.

    I tested Arduino Due (84MHz) and I could read higher frequencys. (AD convertion is faster). obs: Arduino Uno (16MHz).
    The good is that I changed nothing in Arduino code.

    I don't know how use the NodeMCU, maybe we need to change its code.

    If you want I can help you to change the "Processing" code.


    Reply 1 year ago

    I gave up with the NodeMCU, as it has only one ADC input (not four).


    Reply 1 year ago

    BTW, the Processing code is really interesting, I am looking at it. I also made a compilation for Mac OSX and it is working.


    Reply 3 months ago

    Hi, very interesting for me because I „only“ have Macs and never understood Windows;-)
    Would you mind sharing your above mentioned compilation?
    Thanks very much in advance, Michael


    4 months ago

    How can i take the signal from oscilloscope to arduino?

    janih ranasinghe2

    Question 5 months ago

    what is the highest frequence that can be mashured ?


    6 months ago

    Thanks for your nice post! The real Osciloscope is too expensive. With a such tools, everybody can have a simple oscilscope but what is the limitations of this Arduino Oscloscope?


    6 months ago

    I did what you said above ..but I'm not getting output in ide.can u plzz explain how u interfaced aurdino and processing 3.we are doing the same project can u plzz help me out....

    1 reply

    Reply 6 months ago

    Did you do Step 6 ? You have to configure Serial clicking mouse on "select serial" (com1, com2,...) and clicking "select speed" (115200), and then click "off" to change it to "on".


    6 months ago

    Nice Job. There is any way to increase the windows size and scale everything ?

    2 replies

    Reply 6 months ago

    Yes. You have to change the command "size(660, 700)" wich is in "void setup(){..}" at "Processing" program.
    As I did using absolute pixels, you have to change all information of each object (button, dial, checkbox, etc..)


    Reply 6 months ago

    Bro.!!! U got the output..if it is the case can u xplain me how it works....I did the same and exact steps but I am not getting the output...


    8 months ago

    Many thanks! Works like a charm! Exactly what i was looking for.


    10 months ago

    Hi, Great project Thank You :)


    11 months ago

    this is what i'm looking for! great job! but sadly the scope do not find my correct serial port.
    I'm using Ubuntu. The Arduino IDE always shows "/dev/ttyS0" and if a Arduino is plugged in "/dev/ttyUSB0" (...USB1)
    Is there a solution for that?