LEDs have finally begun to surpass compact fluorescents (CFLs) in effeciency (lumens per watt) signaling the perfect time to move beyond crappy LED throwie projects to real, practical LED home lighting. This instructable presents a method to make an LED replacement for the low voltage halogen bulb pendant you currently have over your kitchen countertop or island just like everyone else who has watched trading spaces or extreme makeover home edition in the past 10 years.

Step 1: Gather Your Materials

LEDs have been making big strides in terms of luminous efficiency and cost recently. The current champion in terms of efficiency is the the Philips Luxeon Rebel line of power LEDs. The Rebel is not only tiny at about 3mm by 5mm, it is available in models with >100 lumens per watt. For comparison, typical incandescent bulbs hit the 15 lumens per watt and fluorescents the 75 lumens per watt range. The best source for power LEDs is www.ledsupply.com which sells a variety of LED products for all your LED needs. The item we are interested in here is their "Endor Star" which is a thermally conductive but electrically insulated package with up to 3 Rebel LEDs mounted on it. I used the 3x90 lumens/watt star with 480 lumens of output at 700mA drive. This is pretty much equivalent to a typical 50W halogen bulb that puts out 600 lumens that you might have in your low voltage lighting system. This LED array will cost in the neighborhood of $30 but will last as long as $25 worth of halogen bulbs while using 7W versus 50W for a $50 lifetime operating cost versus $375 operating cost for the halogen.

Besides the LED you will also need a driver circuit. Since the plan is to build an LED replacement for a low voltage lighting bulb, we need a driver that can handle an AC input. Low voltage lighting uses a transformer to reduce the typical 120VAC power to a "low" 12VAC level. www.ledsupply.com conveniently sells an AC capable "buckpuck" that will accept 12VAC input and output a regulated 0-700mA output current for driving strings of LEDs.

So go ahead and shop at LEDsupply or equivalent to get the electronics parts. If you want to be able to dim your LED bulb you will also need a potentiometer. The Endor Star will need to be mounted on a heat sink, such as a section of aluminum angle or channel extrusion. This will require holes to be drilled and tapped as well as screws, heat sink compound, and some wire.


1. Power led such as a 3-up Endor Star with 3 Luxeon Rebel 90 lumen LEDs
2. Constant current LED driver with AC input ability such as BuckPuck 03021-A-E-700
3. 1.25" section of aluminum extrusion for heatsink
4. 4-6 screws fro mounting LED to extrusion, 6-32 works great
5. Tap for threading holes for screws, 6-32 tap works great
6. Heat sink compound for mounting LED to heat sink. Since the LED is isolated, you can use a metallic based heat sink paste like molybdenum anti-sieze
7. Some wire to hook everything up
8. Soldering tools and a clue

Step 2: Build the Heat Sink

The chosen 3 piece Endor Star will dissipate in the neighborhood of 7W of electrical power. Since the Rebel LED is about 15% efficient, 6W of that input power will be dissipated in the form of heat. In addition, the output of the LEDs will decrease with increasing temperature and their lifetime will decease with increased operating temperature. So it is in our best interest to keep them as cool as possible. To do this, we mount the LEDs to a aluminum heat sink.

The pics below show how you should drill a series of holes in your chosen heat sink to match the layout of the LED array detail in the datasheet. Then you will need to tap them to accept mounting screws and test fit screws into them. In my case I used 6-32 screws which I had handy and a tap for. Your mileage may vary.

Prior to mounting your LED you may also want to sand and polish the aluminum surface to improve heat transfer. To do this, start with 400 grit and move up to 600 grit sandpaper before moving to a polishing compound like Mother's aluminum polish. Since these LEDs don't generate that much heat this might be overkill, but it is easy overkill.

Step 3: Mount the LED and Wire the Driver

The next step is to mount your LED to the heat sink. As you can see from the pic, I only used 4 of the six holes for mounting and used the other two to run the power wires from the driver circuit. This has worked fine since all 6 screws are not needed to maintain good thermal contact with the heat sink. Before screwing down your LED, put a dollop of heat sink compound under the LED star. Since the Endor Star is isolated you can use a metal or dielectric based heat sink compound. I used a nickel-moly based anti-seize grease that I had handy since I couldn't find my syringe of heat sink grease. I have not had problems.

Also you will want to solder wires to your LED driver and LED array. In my case I did not want a dimming option so I left those pins open as directed in thedatasheet. Since this project will be part of a low voltage lighting system with its own light switch I left out any switching capability as well.

With the LED screwed down and everything wired as needed, you can glue the driver circuit to the heat sink as well since it is so small. There is no cooling requirement for the driver but this will make mounting the system easier. See pic.

Step 4: Replace That Halogen Bulb

With the LED and driver wired up and mounted to the heat sink, you will want to test the bulb. Since the AC capable BuckPuck driver can handle AC and DC inputs, apply a suitable input voltage and observe the brightness. Since you have 3 LEDs in series you will need at least 12V of input to achieve full brightness at 700mA of output since the LEDs will drop 10.2V and the driver needs 2V of headroom. If you have a lower input the output will just be dimmer. If your LED doesn't light, read over the datasheets and double check your wiring.

At this point it would be a good idea to double check that your light fixture is really low voltage. Get out your multimeter and set it for AC and measure the voltage across the lamp terminals with the power on. You should see in the 12-15 VAC range. If you see 120VAC then you will need a supplemental step down transformer to bring the voltage down to the BuckPuck's maximum rated input voltage of 36VAC. You can get one at Home Depot or Radio Shack. Since your LED lighting system will only use around 10W you can get by with a pretty small transformer.

Now that the LED is working, the next and final step is to swap it in place of your low voltage halogen bulb. I simply removed the halogen bulb and tied the LED assembly in place with string in my halogen fixture. The wattage of the LED is low enough that the string won't melt. I also used a clamp to hold the glass shade temporarily up and out of my way while I worked. See pic. Feed your power input wires into the fixture as needed and flip the switch for a test drive.

The pics below show the LED lamp lighting up my kitchen. The pics were taken without a tripod, showing the lighting power of the LED lamp. To my eye the light generated was about 75% of that generated by the 60W halogen it replaced. After about 10 minutes of on-time the LED assembly was pretty warm (~40C) but not hot to the touch.
<p>How is 15% efficiency efficient? Incandescents are more efficient than that...</p><p> Could you have meant 15% inneficient? Then you would still have a mistake in your calculations...</p><p>Please correct me if I'm wrong</p>
https://en.m.wikipedia.org/wiki/Luminous_efficacy<br><br>Yes, you are wrong. Thermodynamics is a cruel mistress.
<p>and don,t know its working and how tostart make it any bady help me</p>
<p>and don,t know its working and how tostart make it any bady help me</p>
I just made my first LED lamp. I used 13 3 watt Luxeon Rebel LED's. They are very bright? My question to you is where is the profit. I had fun making, I'm just curious about your thoughts in this direction. Is it the set up for accent lighting that you are speaking of?
These days, the profit is in reducing your energy bills. Back when I wrote this, the available LED bulbs were pathetic, none of which used the cutting edge high-brightness high efficiency LEDs. You couldn't find a good LED bulb replacement at nearly any price. FYI, the Rebel LEDs are totally old school now, with many better LEDs available (Such as Cree XML). In the meantime, manufacturers are now cranking out a large number of LED bulb replacements, some of which are decent. Nothing yet that is a slam dunk, but progress is being made and as prices come down further I fully expect LED to replace CFL and halogen in most applications. Not in the easy bake oven though. The limitation currently is the fixtures. Houses and buildings have legacy fixtures designed for easy replacement of a glass bulb. In the future, LEDs will be built permanently into purpose design fixtures that will look much different than what we are used to. For all practical intents and purposes, the LEDs will never fail so replaceability in most applications is a waste and since the LEDs make up such a sizeable portion of the cost, the fixture rather than the light element will become &quot;disposable&quot;. I've moved on to making purpose built custom LED fixtures along these lines since Philips and the like can handle the bulbs. For example, I've done several moped and motorcycle headlights and am building a set of linear LED arrays for low profile closet lighting, and so forth. Commercialization is another story as safety testing is a must. UL listing will be required and the resulting costs have kept me doing one-off work for myself, friends, and family. The future is bright.
&quot;Not the easy bake oven though&quot; - Even the Easy Bake has dumped the light bulb: http://abcnews.go.com/blogs/business/2011/09/easy-bake-oven-loses-light-bulb-gets-20-makeover/
Yea they dumped the light bulb and the ovens don't work very well my sister had one when we were kids with the light bulb they worked great we bought one for my daughter when she was a child i don't think the cake ever baked right not once my wife ended up putting them in the real oven to make the cakes bake that was way before i joined we ended up trashing the easy for a Violin that worked out better anyway lol
This article could really use an update. I recently replaced this very same pendant light in my own kitchen with a 4-LED Feit Electric bulb. it is both attractive, and required no modification to install, just screw in place of the conventional bulb or CFL. It's also brighter than a 60W bulb in my opinion. Say good-bye to Mercury!<br>
Certainly this is an old instructable with LEDs that are no longer state of the art, and I've written new ones that use newer LEDs with higher efficiencies (https://www.instructables.com/id/Improved-high-power-LED-bike-head-light-with-integ/) such as the Cree XP-G line-up. Additionally, I've revamped the pendant light design detailed here with a better heat sink and cheaper driver so that the the total cost is now around $20 with a top of the line XP-G and around 100 lumens per watt. The concepts are the same however: a good heatsink, a constant current driver, and a top of the line LED.<br><br>As old as this instructable is, the Feit bulbs that I have seen are still poor performers in comparison. The efficiencies are miserable, at around 40 lumens per watt. This is in line with a bad CFL. The majority of commercial bulbs are not up to snuff yet, especially the cheap no-name ones coming out of China. There are some good bulbs being made by TESS (and sold through FIRST robotics teams) that are approaching 80 lumens per watt using Cree LEDs in a nice package at $20 subsidized by Google, and Philips has a good bulb with similar specs for $40 (http://www.amazon.com/Philips-Ambient-Dimmable-Replacement-Light/dp/B004IUMGV4).<br><br>Thanks for reading.
I forgot, I wrote up the improved bi-pin bulb:<br><br>https://www.instructables.com/id/Replace-Low-Voltage-Bi-Pin-Halogens-with-LEDs/<br><br>Since then, I have made similar bulbs with the Cree XP-G stars which are significantly brighter at the same power. The pictured bi-pin has a couple thousand hours under its belt of trouble free operation. It is the most used light in the house.
Hi, I finally got the stuff in the mail and unpacked it. I tested one and it worked. But i am having problems getting the wires soldered to the pads i am using 60/40 solder and a 25 w soldering iron what is wrong?
I assume you are talking about the solder pads on the LED star? 2 things make soldering to the star board difficult. 1. The circuit board is of a high thermal conductivity design and heat from the iron is quickly drawn away. 2. The solder used on the board is lead-free and of a higher melting temperature. To solder to the star with 60/40 lead solder you need to get the pb-free solder liquid which might take a stronger iron. I find that I need to use my adjustable 60W high power iron, turned up a bit past where I usually use it and a coarser tip to get the joint done right. Using my 60W temperature controlled Weller does not work well since the temp set point is fixed at 60/40 type temps. Using a 25W may not work at all.<br/><br/>Here is the station I use:<br/><a rel="nofollow" href="http://store.sra-solder.com/product.php/6266/26">http://store.sra-solder.com/product.php/6266/26</a><br/>
how many could put together? should it be series or parallel?
It depends. Both. You can do either or a combination, such as 3 parallel strings of 3 LEDs in series for 9 total. Depending on your available voltage and the current capability of the driver and LEDs one approach may have an advantage. In most applications with moderate available voltage or a boost type driver, it is preferred to use series strings since all LEDs will get the same current. If in parallel, small differences in the forward voltage (Vf) of the various LEDs will result in differing currents through each. The good news is that Vf increases with increasing current so that the parallel strings will stay in the same range of currents. The bad news with parallel is that if one of the LEDs fails in an open state that the rest of the LEDs will have increased current and may fail as well. For example, if you had 3 LEDs in parallel with a 600mA total current then each would be getting about 200mA. If one LED fails, the other two will now be getting 300mA. In a series example with the 3 LEDs, if one fails the whole string turns off, but the other LEDs are unharmed. Another factor is that most buck type drivers are more efficient the closer you run to supply voltage so with higher available voltages (e.g. 12V) you would typically use a buck driver with series LEDs. However if the series combination of Vf's is higher than your supply you need to switch to a boost driver or go parallel LED arrangement. If you have only a small available voltage (e.g. 3.6V) then you will probably have to use a boost driver and stick to LEDs in parallel. OK, enough, I think you get the point. You can do whatever works best.
Hi, jmengel. I´m working on a LED fixture and I have almost decided to use LUXEON Rebels. I can´t buy one or two to test the light output. I´ll have to import them. So I´d like to know: At 700mA, would the light seem as white as fluorescent? I wouldn´t want bluish or yellowish light. Thanks.
Just like fluorescent there are different light qualities depending on the design. Both LEDs and fluorescent bulbs emit white light by exciting a collection of phosphors which actually emit the light. The mixture of phosphors determines the color and quality of the light. So to answer your question, LED light can be as white as fluorescent light. If you are concerned about the light being too bluish, then I would stay away from the "cool" LEDs and focus on the "neutral" or "warm" ones. These are typically less efficient in terms of lumens per watt, but the color of light more closely approximates traditional lighting.
I see that on the star toy have three -,+ connectors as for each led. but you connected only one of them. is this enough to power all three LEDs?? Is it matter to which pair you connect the input voltage? etay
The star board has 0 ohm resistors, or shorts, across the other LED terminals so that the 3 LEDs are in series. Thus you need only connect the power across the single unwired + and - pads. It does matter how you connect the input voltage, it will only light up one way.
O.K. Thanks for your answers. :-)
Hello, First of all thanks for the comprehensive tutorial. my question is how did you calculated the power consumption and efficiency. Etay
Measure input voltage, measure current at the input voltage. Multiply together to get power. For example, 750mA at 10.3V is 7.7W. Efficiency can only be calculated by measuring the output light intensity. Since I don't have the instruments to do this, I use the manufacturer reported numbers.
Great project. I love it. If you wouldn't mind to enlighten this poor noobie: Does a "low-voltage" setup consumes less energy than (comparable in light) regular incandescent bulbs? I mean, if I use LED + transformers/drives and an incandescent bulb (like one of a xmas light for example) without no transformers at all, will I still save energy with LEDS? I guess my question is if those drives/transformers will consume the energy that the LED is "saving". Thanks in advance!
No, I don't think low voltage lighting consumes any less energy than 120V lighting per lumen output. Both are incandescent in that they rely on a heated metal filament for light output. The difference is that low-voltage lighting is typically directional and tailored for an application. Thus the bulb delivers more useful light and allows a smaller wattage bulb to be used. So rather than turning on a 100W bulb in the middle of the room to read by, you turn on a 50W low-voltage light. The transformers can be efficient (>90%, the higher the current capacity the better efficiency under load), and good LED drivers are also very efficient (>95%). I would say ~90% efficient for the electronics for a well designed LED light. If your 1000 lumen LED array consumes 12W, then the fixture as a whole consumes about 13W. Compare that to a 1000 lumen incandescent that consumes 60W and you can see that there are still savings with LEDs.
Thanks for the prompt reply. I was concern about transformers after reading about &quot;<a rel="nofollow" href="https://www.instructables.com/id/Getting_Rid_of_quotVampire_Powerquot_and_Becom/">VAMPIRE POWER</a>&quot; and wanted to make sure I was not actually creating more of those. The application I see for your wise device is to replace those night lights in staircases and corridor walls for LEDs installed in the ceiling instead. I could easily use less of regular night lights, free some wall contacts, and have a lower maintenance cost. I think they will even look great than those night lights plugged into the wall and work better if I add to the circuit a motion sensor and a dusk-to-dawn sensor as well. I am actually ordering few LED modules as we speak to do some test. Your project is neat, green and cool. Thanks!<br/><br/>BTW, do you know why is that low voltage lamps works with its 12VDC transformers, but not with for example a CAR battery with also 12VDC? Cheers!!!<br/>
The transformer in a low voltage system will not waste power constantly like a plugged in wall-transformer because there will be no power to the transformer when it is off, the wall switch disconnects the power. Additionally there are both AC and DC low voltage lighting systems, so it would be worth your while to check yours before implementing. The bulbs will work on AC or DC. The LED drivers may or may not work on AC, depending on the driver design. In many cases, the only difference is the addition of a diode bridge (and sometimes including ripple capacitors) rectifier between the AC source and the LED driver circuit.
opppppppppssssssssss. You are 100% right: They will be switched off when not in use. I missed the wood by the trees. I am sooooooo doing this. Thanks jmengel!! I already subscribed. Keep the good work!
IT is simple to make it to sevarel mhz.just dig out the pcb of a ccfl then hook it with led rope
Some people are sensitive to flicker. I noticed when using things like LED rope light, they seem to flicker a lot - because they run off the 60 cycle as a diode, and thus some are on half the time, perhaps? Or even if run through a full-wave rectifier, they have 120Hz flicker. SO I am wondering if the circuit module you say adjusts current while changing the output to say 30KHz or something which won't be noticed? Alternatively, does anyone know of a circuit that would do 110/120V 50/60Hz to 110/120 but at 30KHz, so you could "plug in existing" LED devices, but they'd not flicker? By the way, I bought a Kill-a-watt meter (EZ or whatever the latest is that allows you to put in electric rates then it totals cost as you use what is plugged into it), and the LED rope light wouldn't even REGISTER, i.e. was under the 0.00A it was measuring!!! It MIGHT measure correctly by "summing" but it would depend upon how many digits of (hidden) resolution it works on in amperage. Anyway, Nice post, thanks for sharing.
Check the capacity and voltage on the capacitors that are connected to the rectifier, if these capacities are not high enough then flicker can be caused because the capacitors that filter and smooth the power stage is fluctuating and the capacitors are discharging faster than the charge is being replaced. The idea of a capacitor is to provide a supply with a top up of power when needed. This means the voltage drop between the rectifier stage and capacitor stage can only be down for a very short time if your capacitors are small value but longer with larger values. The result is less ripple and more stable supplies. Theirs many other reasons for flicker and this will most likely be the cause of it, other causes will be appliance like a TV or Washing Machine for example that are already plugged in and themselves a cause line noise that leads to flicker. For this you would need line suppression.
The circuit module I used adjusts the voltage to maintain a constant current. The module can also be PWM controlled to reduce effective brightness at high frequency that will not register as flicker on your retina. If you want your rope LED to not flicker you need to run them off of DC. You could make a simple linear supply without a x-former, direct to a rectifier, and some caps to get >120VDC with some 120Hz ripple. You are not able to see 120Hz flicker so that should suffice. Some of the LED light strings have a power supply box, you would have to investigate that if you had one before messing around with the power supply. -J
Thanks, yah, DC is a simple way to do it, I kind of didn't see that "hand in front of my face" ;-) But actually I'm thinking pulsing give you more light per watt - I saw a curve once, with frequency and amps, and putting a crazy # of ma thru an LED but only for a millisecond every so often was the brightest perceived light.... I'd have to dig that up again. Thanks for replying!!
and profit? dude, this thing looks awful. We gotta dress it up some, cuz it works great :D
Sweet I am glad to see someone finally put this on Instructables. One recommendation though, it would be a lot simpler to use thermal adhesive instead of screws, it will also help to reduce the risk of shorts, because the screw heads are very cloce to the soulderpads. Thanks for posting!
This is excellent! Plenty of light in a very do-able low-cost setup. thanks for the good write-up. My only reservation about this setup is that it uses cool white temperature LEDs. If they were available in warm or neutral I'd be all over this.
The problem with the neutral and warm LEDS is that the efficiency falls off. For example, if the cool white (6500K) units have 100 lumens per watt, the neutral (4100K) would have 80, and the warm white (3100K) 60.
You can get warm white chips as well for these. :-D
It isn't over yet on how bright these LEDs will get; <a rel="nofollow" href="http://tinyurl.com/6f3v2p">890 lumen LED</a>.<br/> <br/> I decided to get off the power company a bit, and lit the house up with 50,000 mcd LEDs.. Moonlight the landlady calls it.<br/> <br/> But, the difference in KWH/day was so significant, I went back to the same seller that I got these from (same as the link), and now he has 280,000 mcd LEDs with a 40 degree spread (fiction, in reality; that's the 50% deviation).<br/> <br/> An online calculator puts these at just under a 15W incandescent.<br/> <br/> I see LED lighting as the future, with the economy on light output per watt consumed.<br/> <br/> If the 280K mcd LEDs play out, I'll put an instructable up as to a nice looking ceiling fixture..<br/>
If the stats for the 890 lumen LED you linked to are legit, the lumens per watt is in the 80-90 range which is good, almost as good as the best Philips Rebels and Cree XR-E units (~90-100 lumens per watt). The difference is that there are lenses available and reputable manufacturers behind the name brand LEDs. This isn't to say these Ebay ones aren't worth a shot. Keep us posted on how well/long they work. Packing 10W into a small package means high junction temps even with good cooling so I would expect light output to fall off significantly as they warm up and lifetime to be shortened.
Why would someone want to consume murcury regardless of how minimal it is and the claim that its in fish is just that a third party claim,if cfl bulbs were banned then we could all breath a lot easier.I commend anyone who alerts others to this danger and shows a way how to avoid the problem.
Those mounting screws look awfully close to the solder tabs on the star. I saw some one else recommend nylon screws or washers to prevent a short. Have you had any problems?
Nope, no problems yet. Depends probably on the placement/size of your screws and your particular star as the uniformity didn't seem so great on the solder.
Very clear instructions, good job! Favorited.

About This Instructable




More by jmengel:Laser Cut Front End Loader Toy Laser Cut Ukulele Electric Brewery Control Panel on the Cheap 
Add instructable to: