Glowstick Dissection and Painting




Introduction: Glowstick Dissection and Painting

About: Hi there! Hopefully these guides can help inspire you to tinker, be curious, play, contribute, and learn. If you're here for pandemic-related PPE and want more, check out our Something Labs website at somethin…

Behind the ubiquitous decorations for dances parties is a chemist. A big party-loving super-nerd chemist. While glowsticks and other chemoluminescence patents were orginally for the US Navy (probably to party, okay maaaybe for emergency response), they have since sprung up everywhere. This project introduces the idea of chemical reactions while showing off the art and beauty than can come from complex chemistry. After all, science is beautiful.

Let's science these glowsticks and art with them, too.

Start by WATCHING THE VIDEO, and then let's glow! :)

  • What: Glowstick Dissection + Painting
  • Why: Because it's "Sandstorm" meets Chemistry
  • Time: ~ 15-45 minutes, depending on depth of interest
  • Cost: ~ $0.99 per big glowstick
  • Materials:
    • Glowstick (large, wide ones are easier)
    • Paper Towel
    • Cup of Water
    • Plastic Containers
    • Hydrogen Peroxide (optional, can get at any CVS or Walgreens)
    • Ice (optional)
  • Tools:
    • Cutters (wire cutters are best, but scissors will work)
    • Liquid Applicator (could be plastic pipettes, basters, syringe, anything)
    • Petri Dishes (or other dish to paint in)
    • Safety glasses
    • Gloves

ADVISORY: Glowsticks are the funnest. You may just have too much fun with them. Also as you might imagine, the chemicals that create chemoluminescence are not great to touch to skin or eat. They are fine to dispose of regularly, but not good for direct human body-ing. So despite the temptation to paint yourself like a radioactive beast, avoid it. Old glowsticks used to use an activator that was believed to be carcinogenic if ingested, but that's not the case anymore. Wear adequate protection and you should be good to go!

Step 1: Prep Your Project

Yay, prep time!

First thing up, you should label all your plastic containers as it will get confusing once chemicals are in them. Each glowstick will have two parts to it: a clear activator fluid (hydrogen peroxide) in the plastic sheath, and a fluid (diphenyl oxalate) with a dye inside the glass tube. You'll want to keep those separate so the reaction doesn't start without you.

Throw on some gloves because one of the byproducts "phenol" is not good for the skin, and throw on some safety goggles too because we'll have a brief moment of breaking glass.

If you have a class, this is a great time to go over what a chemical reaction is. If you want to go deeper, you can talk about the hydrogen peroxide and diphenyl oaxalate reaction, and how it excites photons to be emitted via the dye. If you want to go super science powerhouse, you can check out this chart of the compositions of the different dyes.

Go for it!

Step 2: Cut Open and Drain First Liquid

Let's dissect! Some glowsticks have clear tubes, and some are translucent to make certain colors.

Regardless, they work pretty much the same. Hold your glowstick so the wider end is at the bottom, and look through it to see where the glass tube is. Use your cutters to snip off the top, and you should be able to see a reservoir of clear fluid surrounding the glass bottle.

Pour that fluid into your "activator" container. This is the same fluid across all glowsticks, and is simply hydrogen peroxide. That's right. The same stuff you throw on cuts to make them bubble.

OPTIONAL: If you want more activator, simply buy some hydrogen peroxide at the store and throw it in. You'll find that the store stuff is a much higher concentration than what's in most glowsticks. This will make your glowstick burn brighter but for less time, and is a great teaching point about the rates of chemical reactions. Chemical engineers have thought of this, and made what they believe to be the optimal concentration for party time: both bright and long-lasting.

Step 3: Remove and Clean Glass Tube

Inside your plastic tube is a glass one. With a little bit of finagling, you can remove it and see the liquid within. Dip it in water, and clean it so no hydrogen peroxide remains on the surface. This will keep it from prematurely reacting before we're ready to paint.

Step 4: Cover, Break, and Pour Glass Tube

Take a piece of paper towel and cover the glass tube. Use your cutters to break it at the top, making sure to have proper eye protection on. Pour the contents of your tube into a container. This is the other half of the reaction.

The contents of this tube are diphenyl oxalate and the dye involved. When mixed with hydrogen peroxide, it will decompose to carbon dioxide and phenol while exciting a photon in the dye to be emitted. As you can see in this tube, the dye is clearly not red, which is why they colored the tube red. For business purposes, glowstick companies vary in what dye goes into the plastic vs. the fluid, so you'll have to see what you get!

Make sure to cleanly dispose of the glass at the end of your experiment.

You're getting closer to the party!

Step 5: Repeat for Other Glowsticks

If you want a full palette to paint with, repeat the process with other glowsticks. You'll want to keep the contents of the glass tubes in separate containers as these are the dyes, but you can pour the activating liquid (hydrogen peroxide) all into the same container. Interestingly, you'll find you have much more diphenyl oxalate and dye mixture than hydrogen peroxide.

You're almost ready to party!

Step 6: Prep Painting Party

You're almost ready to paint! For painting, I found that petri dishes work great as a container with a dark background. If you have one, pour the activator into some sort of applicator bottle. If you don't you can use just about anything else (a stick, a syringe, anything).

Move your contents to somewhere that you can make pretty dark, and you're ready to go!

Activate party mode!

Step 7: Paint Glow-y Wonders

Time to start combining everything to bring a painting party to life. I poured a separate color in each dish, and then used the applicator bottle to drip in hydrogen peroxide slowly throughout. You'll find interesting patterns of diffusion as you go. At the end, of course, it's fun to combine them all to make wild galactic-type images.

You'll find that you can vary the brightness and intensity by the amount of peroxide used, the concentration, and the temperature of the whole experiment. Put ice below your petri dishes or refrigerate them to see what happens. At the end take some photos, wash out your supplies, dispose of the glass and tube, and you're all set.

I'm excited to see what you or your students make, so pass along photos or comments! I love hearing from you, so feel free to write below!

Have fun, and as always, keep exploring.

Make It Glow! Contest

Participated in the
Make It Glow! Contest

Be the First to Share


    • Clocks Contest

      Clocks Contest
    • Baking Contest

      Baking Contest
    • Cold Challenge

      Cold Challenge



    3 years ago

    This was a super cool project to do for our chemical reactions unit. It even fell right at Halloween for perfect! I bought a bunch more glow sticks on sale for next year. The students loved it and used a lot of the information from our project in CER writing. The standards we focused on were the properties of materials before, after and during reactions,chemical reactions and predicting what happens as thermal energy is added or removed. I have _a lot_ of students and really appreciate this lab as it was highly engaging, informative and inexpensive. The measure of success in these days is how many kids beg to take out their phones to snapchat their science work and send pictures to their parents. Awesome day. My kids even made a few colors I think are marketable. :)


    7 years ago

    Wow thats very nice


    7 years ago

    Some of the most intense light I've seen from a glow stick was when it was put in a pot of boiling water. Really neat to see how temperature plays a role on the chemical reaction.

    The Oakland Toy Lab
    The Oakland Toy Lab

    Reply 7 years ago

    Ahhh yes indeed, JoBar! I have to try that!


    7 years ago

    I think I know what I am doing tonight

    Antzy Carmasaic
    Antzy Carmasaic

    7 years ago

    That's a really beautiful take on the traditional ebru techniques...

    The Oakland Toy Lab
    The Oakland Toy Lab

    Reply 7 years ago

    Thank you, Antzy! And very neat to think about ebru techniques with this.


    7 years ago

    Wow, the glow looks so cool!