Portable Retro Hi-Fi Speaker




The electronics for this project are now available as a kit from Jameco electronics!  Includes a blank PCB and all components/connectors required to build this project. 

DISCLAIMER:  Batteries can be dangerous.  They can deliver high current if shorted out and start fires.  If they are improperly charged it is possible they can explode.  Please do not attempt anything that you are not familiar with and do not feel safe doing, and double-check your work.  I am not responsible for any damage or injury due to misuse of these instructions.

Portable audio is a pain.  Its either a huge boombox that eats D batteries like M&Ms, a bad-sounding iPod dock, or a virtually silent mini speaker set.  None of these will do for a true music lover.  Those who are so inclined and adequately skilled can build one that meets their exacting demands with relative ease.  Now you'll be all set for a trip to the beach or camping. 

A couple years ago while building an amplifier project I accidentally burned out the main driver from a set of Minimus 7 bookshelf speakers.  Radioshack has sold this pair of speakers in various forms for over 30 years, and they are well known for their great sound and low price.  I was quite bummed out that I was left with only one, collecting dust in my storage room, unlikely to ever be of use to me as a Hi-Fi speaker again. 

Then I was inspired to turn it into a portable Hi-fi speaker by installing a rechargeable battery, charger circuit and amplifier.  I had most of the parts needed lying around and managed to put the device together for only $15 additional costs.  A thrifty shopper could probably do the project for around $60.  Great value indeed!

In this guide, I will show you how I converted this speaker into a battery powered portable mini Hi-Fi system.  It works great!

Step 1: Parts and Materials

Heres the list of goodies you'll need, and some details about them.
  • A bookshelf speaker.  You're going to want something that will work well on only 10-20 watts of power, otherwise the battery life will be very, very short.
  • Sealed Lead Acid battery.  I know these are heavy, but they're also cheap and very easy to charge.
  • Circuitry.  The full bill of materials is on Step 3.  The circuit is based on the reference design for a TDA2003 10 watt audio amplifier IC and a generic lead acid charging circuit using a LM317 variable voltage regulator, used to control charge current for the battery.
  • 18V laptop power supply.  It is important that it is 18V.  The lead acid battery charger circuit needs 18V and the amplifier doesn't like continuous operation above 19V.  Hopefully you can find one of these for cheap or free.  2A or more is plenty of current for this.
  • Sheet metal.  Something to fill the hole in the back of the cabinet to make a new control panel out of.
  • 2.1mm DC input jack.  For the input power from the laptop supply.
  • 3.5mm stereo jack.  For your audio source input.
  • Toggle switches.  For switching between wall power (charge) and battery power modes, and for on/off control.
  • Potentiometer (optional).  To control volume, if you want the ability to control it separately from your device.  Controlling it from your device will save on your device's battery power, though.  The TDA2003 only uses the power you hear so there is no waste of power having it at maximum volume all the time.
  • Chip heatsinks.  Definitely a good idea to add some small heatsinks for the ICs.
  • Handle.  Something to make it easy to carry.
  • Rubber feet.  To protect the wood and make sure the device doesn't slide away.

Step 2: Fabricating Some Parts

Remove everything from the speaker cabinet.  If you are using a multi-speaker cabinet like mine, separate the crossover since you will need it later. 

Mark and drill holes in the side of the cabinet for the handle.  This will be easier to do now than later.

Use a ruler to measure the spacing and diameter of the hole on the back of the speaker.  If the one you are using has permanent wires or something, you'll probably want to drill a large hole to facilitate switch and jack mounting, since the 3/8" or 1/2" thickness of the wood is going to make switch and jack mounting impossible.  If your enclosure is metal then you'll probably be fine without a plate at all.  Just mount everything right through the cabinet itself.

After making various measurements of components, I drew a drill template in AutoCAD to print out and transfer to some aluminum sheet metal.  Lots of materials can work for this purpose.

I also fabricated a small bracket out of the same aluminum to retain the battery inside the case, as seen in picture #3 on this step.

Step 3: Circuitry Explanation

I made a PCB for this project to save space.  I've supplied everything needed to build your own PCB in PDFs.  One is the schematic.  One is an image with a silk screen to help you build the board and show you where to place a few jumper wires.  The last one is a ready to print transfer that is pre-flipped for iron-on PCB making methods. Use these to fabricate by your favourite PCB method. 

Alternatively, you can build it on perfboard or however you like to do it.  Personal preference weighs heavily in these things. 

Wire the switches and inputs with enough wire they can reach where you are externally mounting them.  Use 22 gauge wire or higher for the switches and power input to ensure the wires don't get hot.  If you want to get fancy, use shielded cable for the headphone input. 

The amplifier is lifted directly from the datasheet for the TDA2003A 10W car radio audio amplifier IC.  This IC is really simple and works well with a line-level input from an iPod, phone or laptop.  Since this is a mono speaker and most sources are stereo, I added R9 and R10 to serve as a passive mixer circuit, combining the stereo signals into a mono signal.

The lead acid charging circuit uses a LM317T variable voltage regulator IC.  It functions by controlling the current that the battery can receive from the laptop power supply to an optimum level for charging.  When the battery approaches full, the battery voltage increases and the circuit delivers a reduced amount of current to "trickle charge" the battery further, and maintain the full charge without damage.

If you don't want to include a volume control and would rather control the volume from your device, simply solder a wire from the center potentiometer hole to the other potentiometer hole not connected to the ground plane. This will simply pass the circuit through.

PLEASE NOTE it is important to tune the trimpot RV1 while measuring the current through the battery with an ammeter so that the current through the battery is 1/10th the Amp-hour (Ah) value of the battery.  In my case, my 1.3Ah battery should be charged with 130mA of current for optimal battery charge and lifespan.  Over-current charging can cause the battery to vent hydrogen gas, which in a confined area can trigger an explosion.  Do be sure to adjust the trimpot correctly.

For speakers with a crossover, you'll need to solder some wires to where the old wire hookups were so that the crossover can be connected to the PCB.  For LC crossovers, the inductor goes in series with the woofer and the capacitor goes in series with the tweeter.  Try to leave the crossover wired as it was originally, those engineers (probably) knew best.

Here is the full parts list for the PCB:

Integrated Circuits,"U1",TDA2003,
Integrated Circuits,"U2",LM317T,
Miscellaneous,"J1",T Block
Miscellaneous,"J3",T Block
Miscellaneous,"J4",T Block
Miscellaneous,"J2" Wi
Miscellaneous,"RV1",1k Trimpot
Miscellaneous,"RV2",100k, Potentiometer

Step 4: Testing the Circuit

Hook it all up and check that it works!

When testing the battery charger, turn the potentiometer maximum counter-clockwise to minimize current to the battery.  Connect 18V DC to the circuit, and connect the battery with an ammeter in series with it.  Turn the potentiometer clockwise until the charge current reaches 1/10th the Ah rating of the battery.  As the battery charges the current should slowly drop.  Also, the current will be flowing in reverse than how you would expect when you connect the (+) of the ammeter to the (-) of the battery.  This is how it works and not a sign something is wrong, as it may intuitively seem.

To test the amplifier, connect the speakers and a music playing source.  If you're unsure about your circuit building skills (or my design skills) use a volt meter to check the voltage present at the 3.5mm jack, or test with an old device.  If you hear music, everything works great!

Step 5: Assembly

Time to assemble!

First, put the battery in place.  I used #4 wood screws for mounting everything, and drilled 5/64ths pilot holes where possible.  If no pilot hole is possible it is okay since the particle board can take a small screw without cracking.

Mount the PCB on some small plastic standoffs so that it isn't sitting directly against the wood.  I had some small 3/16" tall nylon washers which worked perfectly.  Try and keep it away from the speakers so that there is minimal interference, both physical and electromagnetic.

Route the LED up through a hole in the speaker face of the cabinet and secure it with the LED holder.  I just pulled one of the dust screen mounts out with pliers and put it in there.

Route the switches and jacks out the hole in the back and attach them to the plate.  Screw the plate in place on the back of the cabinet.

Put hot glue on the crossover and glue it inside so all the wires can get to where they need to go.

Connect the speakers and screw them in.

Stick some little rubber feet on the sides you want it to stand on.

Plug it in and test it out!

What to check if it doesn't work:
  • If it works on wall power but not on battery, check the battery polarity and charge.  Reverse polarity on the battery is really bad for the circuit so try and not do that one.
  • If it sounds bad, make sure you didn't get the wires for the tweeter and woofer mixed up.  This would cause some really odd sound.
  • Sometimes T-blocks don't get a good grip on wires and they fall out after handling.

Step 6: Finished!

Take pride in knowing you put an old unloved speaker to good use, and enjoy the high quality audio now at your disposal anywhere, anytime. 

  • A low battery indicator.  I thought of this after I was nearly finished but a transistor and voltage divider could activate an LED when the battery drops below a particular voltage.  Could definitely come in handy and would also help prevent over-draining the battery.
  • A different battery technology.  A lighter or more powerful battery technology would increase the battery life and weight quite a bit.  They are, of course, more costly and require special charging circuit otherwise they pose a major fire hazard.
  • Bigger more powerful amplifier.  The TDA2003 design is scalable, so a more powerful amp circuit could be devised, but the battery life will take a hit unless upgraded as well. If someone wanted to build a large cabinet with a full car battery inside then a 100W amp may be required.  High power amplifiers for car audio can be purchased as kits for relatively cheap on the internet.
Please feel free to ask any questions or post suggestions.  Thanks for reading!
Fix & Improve It Contest

Participated in the
Fix & Improve It Contest



    • Sensors Contest

      Sensors Contest
    • Barbecue Challenge

      Barbecue Challenge
    • Games Contest

      Games Contest

    80 Discussions


    2 years ago

    Over voltage will destroy a lead-acid battery too. Don't go over 13.8V to be on the save side (measure the output without it been connected to the battery)


    4 years ago on Introduction


    Nice project. I'm working on something similar, installing a raspberry pi for music streaming into an old transistor radio. I'm limited on space, as I imagine this build was too, the only way to fit a lead acid battery into the project is with it right up against the back of the speaker.

    My question is, did you have the same problem? How close is the battery to the speaker magnet (it's a bit hard to figure out from the picture)? If they are close (as in 2-5mm), does that have any implication for the sound, or could it damage the battery?


    1 reply

    It's more than an inch away, but I don't think it would have a problem anyway, as long as it isn't touching the battery contacts.

    Lithium polymer batteries for RC vehicles are coming down in price, take a look at implementing one of those to save on weight and get longer battery life. That's what I would do if I was doing it again.


    4 years ago on Introduction

    What if i want to use 220v ac instead of a battery, what transformer and rectifier do i need? And can you give me some explanation like how much are the output voltage, current and power after passing a transformer. Can I just use a bridge rectifier or you think there is a better method.It would be great if you give me other important details too because Im still new to this kind of stuff. Thank you very much.

    1 reply

    I recommend you use a 18-20V laptop power adapter. They are cheap, efficient, and easy to use. If you are new to transformers you should definitely be reading lots of theory material and understanding precisely what you are doing, as you know 220V AC can kill you.


    4 years ago

    Can you also teach how to build a crossover? or at least pls give some advices

    1 reply

    Reply 4 years ago


    This page has many articles, tutorials, and calculators for crossover design and building.


    4 years ago on Step 6

    very nice project , ive been looking for this for a long time thanks x)


    5 years ago on Introduction

    (I've tried submitting this question two other times, but for some reason the "Back-Space" button kept on turning the page back, thus loosing what I had wrote.)

    Two questions though:

    First, if batteries are usually charged about 2 volts above the battery rating, which in this case would 14V for a 12V battery, then why is 18v needed from the power supply?

    Second, is it important to use a laptop charger, or can an AC-DC wall adapter with the same rating work? (Because as far as I know, a laptop power brick is just a cleaner supply of DC.)

    Please respond back when you have the chance, and I'll really appreciate it. Thanks.

    Also, another thing. You had said if we had any suggestions to leave them in the comments. Well I was thinking if you were to add some "Speaker Grill Cloth Fabric" to the front, it help keep the dust out, and prevent things from puncturing the speaker themselves. Plus it would look very nice if you were to use some vintage looking speaker fabric.

    3 replies

    Hi there, the reason for the 18V supply is so that there is some overhead for the charging circuit, since it uses a linear regulator for a constant current source. The 18V also gives the amp a little more overhead and volume capability when plugged in. The laptop supply is just because you can't beat laptop supplies for voltage and current capabilities, for the price. They can also be found cheaply or for free from a dead laptop. The clean voltage is also nice but any supply should do. I removed the speaker cover because it looks way cooler, and it isn't so obvious that its a speaker box when its on there so it isn't as good for pictures. I lost the dust covers a long time ago for this one anyway. Dust covers really doesn't do muc to prevent punctures but does help against UV damage from the sun.

    Thanks for returning my question so quickly, I really appreciate it!

    Now that you explained why 18V is needed, it makes allot more sence. So basically what you're saying is: Instead of draining the battery while it's charging, the excess voltage powers the amp letting the battery charge steadily. You also have a very good point about the laptop chargers. You can find them quite easily and cheaply also. I also have to agree, it does look cooler seeing the actual speaker instead of a bland black dust cover.

    I do plan on building one of these over the summer, but I can't seem to find any good Bookshelf Speakers lying around (and I don't really want to buy any from for say "Best Buy", cause for the price they charge, you minus well just buy a boombox). Though I do have some old car door mount speakers that my Father got a long time ago and never used. Was thinking of getting some plywood and routing that into a speaker box, though I'd probly make it stereo instead of Mono since I have two speakers. I'll make sure to let you know how it goes once I get around to it. I do want to modify the circuit just a tad, by adding an indicator light which would display Battery at full charge.

    Question about that though. In order to get a stereo sound, wouldn't I just build two of the speaker amplifying circuits without the two mixing 1K Resistors at R9 and R10?

    Yes, just remove the resistors and send one channel to each circuit. For the full charge indicator, use a NPN transistor and a LED, and a pair of resistors that put 0.7V on the base of the NPN when 12V is coming from the + of the battery. The LED won't light until the voltage becomes 12V. You could use a trimpot in place of two resistors to make it adjustable trigger.


    5 years ago on Introduction

    Could you make an instructable on how to incorporate a Radio and Auxiliary device in as well? Built in to the housing that is...

    1 reply

    6 years ago

    Very cool


    6 years ago on Introduction

    uhmmm what will happen if I failed to build a crossover and instead, directly connecting the tweeter and sub together? if the crossover is really needed can you please teach me how? 'cause im still new on these things and i would like to build this project because im also a music lover and a portable speaker will help me alot..thanks in advanced!! :D

    1 reply

    A simple crossover is very easy to make, it only contains two components.  This tool will help you out http://www.diyaudioandvideo.com/Calculator/XOver/

    Without the crossover some speakers can get grumpy about having to try to handle low frequencies (tweeters don't like that) or high frequencies (woofers just plain can't do it) so there's good reason to include one.  Sound quality will suffer without one as well.


    6 years ago

    The kit by jameco with all of the components is either not complete or am I missing something? Unless I completely overlooked something, I don't see the .5 ohm 5w resistor, 1k resistors and has extra 47nf caps in place of the 37 or 39nf caps (can't remember which) in this jameco kit. Am I doing something wrong?