author

JohnL79

Inbox View Profile
2Comments

Tell us about yourself!

  • Please slow down and try to absorb things step by step. Always look through the datasheet for any part you're using, it will list what marking is used to indicate pin 1. In the case of 555s, they are usually interchangeable as far as pinout but may have small differences in details of spec and performance. Keep in mind that some parts come in different packages, they're not all made to work with your breadboard. Almost all breadboards are 0.1"/2.54mm spacing, and most all *DIP* (dual inline package) chips are 0.1"/2.54mm spacing as well and should plug right into a breadboard. It sounds like you got an SOIC package which has 0.050"/1.27mm spacing and is for surface mounting, not meant for breadboard without a DIP adapter. Using pots can also be searched and studied, t…

    see more »

    Please slow down and try to absorb things step by step. Always look through the datasheet for any part you're using, it will list what marking is used to indicate pin 1. In the case of 555s, they are usually interchangeable as far as pinout but may have small differences in details of spec and performance. Keep in mind that some parts come in different packages, they're not all made to work with your breadboard. Almost all breadboards are 0.1"/2.54mm spacing, and most all *DIP* (dual inline package) chips are 0.1"/2.54mm spacing as well and should plug right into a breadboard. It sounds like you got an SOIC package which has 0.050"/1.27mm spacing and is for surface mounting, not meant for breadboard without a DIP adapter. Using pots can also be searched and studied, they use certain conventions that you just have to learn first. The "CW" with arrow indicates which direction you turn the pot to move the wiper (pin 2) from one voltage to the other, thus sweeping its output. The pot forms a voltage divider from pin 1 to pin 3 voltage, with the divided value being output on pin 2.

    View Instructable »
  • A multimeter can't accurately measure resistances this low. You really need to pass a large current through it and measure voltage drop (4-wire method). R = V/I. Increase current until you start seeing a noticeable drop but be aware of the power being dissipated and check that it's not heating.

    View Instructable »