Introduction: Make Your Own Enigma Replica
EDIT: This Instructable has won Second prize in the 2013 Radio Shack Microcontroller Contest. Thank You to all who voted!
EDIT2: An Open Enigma with fake Standup Nixie Tubes like the ones pictured in this Instructable will soon be available as a Special Kickstarter edition.
This is our very first Instructable and this step by step guide will show you how to build a fully functional electronic replica of the world famous German Enigma machine. This Arduino based Open Source project is able to encrypt & decrypt any Enigma M4 encoded message.
This first ever fully functional Open Source Enigma "exact " Replica was inspired by the Kid's Game to Arduino Enigma Machine by sketchsk3tch.
Using Multiplexing for the LEDs, this circuit with 115 light emitting diodes uses only 38 pins and the 36 push buttons use only 4 pins total thanks to properly placed resistors (and the P-Channel MOSFETs) in the keyboard loop. These 4 16-Segment displays & an LED for each keyboard button would add up quickly the total number of pins required and even the Arduino Mega would have ran out of pins without the 2 methods mentioned above....
In response to the overwhelming demand, we designed the PCB and made it available through www.stgeotronics.com. Skip to Step 10 & beyond for more info. We also offer it as a complete electronics kit & an assembled & tested complete product.
Step 1: Proof of Concept on Breadboard
Step 2: Gather the Raw Materials...
1 Arduino Mega
26 Alpha Buttons
26 1/4" Jacks Mono
10 1/4" Plugs Mono
36 Pushbuttons
1 On/Off/On Switch
4 16Segment Orange
4 Injection molded 2-Liter Soda Bottle preform (test tubes)
1 Case Plywood
1 Hinge & Hooks
1 Half-Mortise Lock
1 Perfboard
38 Resistors 470 Ohms
40 Resistors 1K Ohms
7 IRF9Z24N P-Channel MOSFET
1 Piece of Metal & Spray paint
Optional:
Battery Case
Rechargeable Batteries
Battery Charger/Connectors
If we were to do it again, we wouldn't use 1/4" Jacks & Plugs as these are pretty big and tend to overwhelm the whole Enigma. Banana plugs & jacks are smaller & closer to the original connectors used by the real German Enigmas.
Step 3: Lay the Components Down
We started dividing the space on the Perfboard equally between the 3 regions, but realized soon that this would make the electonic Enigma longer than the real one, so we compressed everything down to the proper spacing.
Once satisfied with the positioning of each components, next step is soldering.
Step 4: Soldering, Soldering & a Little More Soldering
Our decision to raise the 16 Segment displays up to make them look like old-time Nixie tubes certainly added a lot of solder points!
Our Arduino Mega Pin assignment:
17 Segments:
Seg Pin Wire DuinoPin
a 2 blue 24
b 1 white 22
c 16 wh-bl 25
d 13 green 31
e 9 wh-br 38
f 8 brown 36
g 6 green 32
h 5 wh-or 30
k 4 orang 28
m 3 wh-bl 26
n 17 blue 23
p 15 orang 27
r 12 wh-gr 33
s 11 brown 35
t 7 wh-gr 34
u 14 wh-or 29
dp 10 wh-br 37
anode1 18 red 39
anode2 18 red 41
anode3 18 red 43
anode4 18 red 45
LEDs:
1 40
2 42
3 44
4 46
5 48
Lamps:
QAP 10
WSY 9
EDX 8
RFC 7
TGV 6
ZHB 5
UJN 4
IKM 3
OL 2
anode1 (First Row) 11
anode2 (Second Row) 12
anode3 (Third Row) 13
Function Keys:
A0
Keyboard:
First Row A1
Second Row A2
Third Row A3
Step 5: Make a Box and Cut & Drill the Top Plate.
We decided to cut a steel plate from an obsolete rack mounted server as it had just the right thickness of metal for our needs. After making a transparency that showed where every button/lamp was located & cutting it out, we were able to superimpose it on the metal piece and draw each required hole with a sharpie.
We then spray painted it textured black to look like the real Enigma.
Step 6: Integration Tests
Then is the fitting of this solid assembly into the wooden case ensuring we didn't introduce a short anywhere.
Step 7: Software - Ohhhh.... Ouch!
A code that tests that each keyboard button is read accurately.
A second code that tests each of the 10 function buttons.
An Enigma_POST (Power On Self Test) sketch that tests that each keyboard lamp can be lit precisely and move each LED through each mode, with some modifications to the original breadboard code to ensure each segment of the 4 16-Segment LEDs is working perfectly.
But, even with all these sample codes on hand that tested every piece of hardware on the machine, the task of reproducing the encrypting/decrypting functionality of a real M4 Enigma was a Mathematics tour-de-force!
All Arduino sketches will be available on our Github that we are currently setting up.
Here is the Enigma_POST sketch:
/* Enigma Development Code to Test each of the 4 Nixies, the 5 LEDs,
then Turn On each Lamp in sequence.
Written by Marc Tessier & James Sanderson 9/8/13
*/
// Define the 16-Segments Pins
int segment[17] = {24,22,25,31,38,36,32,30,28,26,23,27,33,35,34,29,37};
int anode[4] = {39,41,43,45};
// Define the 9 lamps Pins
int lamp[9] = {10,9,8,7,6,5,4,3,2};
int lanode[3] = {11,12,13};
// LTP587P Segments: A,B,C,D,E,F,G,H,K,M,N,P,R,S,T,U,dp
boolean segmentvals[39][17] = { { 0,0,0,0,1,1,0,0,1,1,1,0,1,1,1,0,1 }, // = A
{ 0,0,0,0,0,0,1,1,1,0,1,0,1,0,1,1,1 }, // = B
{ 0,0,1,1,0,0,0,0,1,1,1,1,1,1,1,1,1 }, // = C
{ 0,0,0,0,0,0,1,1,1,0,1,1,1,0,1,1,1 }, // = D
{ 0,0,1,1,0,0,0,0,1,1,1,0,1,1,1,0,1 }, // = E
{ 0,0,1,1,1,1,0,0,1,1,1,0,1,1,1,0,1 }, // = F
{ 0,0,1,0,0,0,0,0,1,1,1,0,1,1,1,1,1 }, // = G
{ 1,1,0,0,1,1,0,0,1,1,1,0,1,1,1,0,1 }, // = H
{ 0,0,1,1,0,0,1,1,1,0,1,1,1,0,1,1,1 }, // = I
{ 1,1,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1 }, // = J
{ 1,1,1,1,1,1,0,0,1,1,0,1,0,1,1,0,1 }, // = K
{ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1,1 }, // = L
{ 1,1,0,0,1,1,0,0,0,1,0,1,1,1,1,1,1 }, // = M
{ 1,1,0,0,1,1,0,0,0,1,1,1,0,1,1,1,1 }, // = N
{ 0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1 }, // = O
{ 0,0,0,1,1,1,0,0,1,1,1,0,1,1,1,0,1 }, // = P
{ 0,0,0,0,0,0,0,0,1,1,1,1,0,1,1,1,1 }, // = Q
{ 0,0,0,1,1,1,0,0,1,1,1,0,0,1,1,0,1 }, // = R
{ 0,0,1,0,0,0,1,0,1,1,1,0,1,1,1,0,1 }, // = S
{ 0,0,1,1,1,1,1,1,1,0,1,1,1,0,1,1,1 }, // = T
{ 1,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1 }, // = U
{ 1,1,1,1,1,1,0,0,1,1,0,1,1,1,0,1,1 }, // = V
{ 1,1,0,0,1,1,0,0,1,1,1,1,0,1,0,1,1 }, // = W
{ 1,1,1,1,1,1,1,1,0,1,0,1,0,1,0,1,1 }, // = X
{ 1,1,1,1,1,1,1,1,0,1,0,1,1,0,1,1,1 }, // = Y
{ 0,0,1,1,0,0,1,1,1,1,0,1,1,1,0,1,1 }, // = Z
{ 0,0,0,0,0,0,0,0,1,1,0,1,1,1,0,1,1 }, // = 0
{ 1,1,0,0,1,1,1,1,1,1,0,1,1,1,1,1,1 }, // = 1
{ 0,0,0,1,0,0,0,1,1,1,1,0,1,1,1,0,1 }, // = 2
{ 0,0,0,0,0,0,1,1,1,1,1,0,1,1,1,1,1 }, // = 3
{ 1,1,0,0,1,1,1,0,1,1,1,0,1,1,1,0,1 }, // = 4
{ 0,0,1,0,0,0,1,0,1,1,1,0,1,1,1,0,1 }, // = 5
{ 0,0,1,0,0,0,0,0,1,1,1,0,1,1,1,0,1 }, // = 6
{ 0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1 }, // = 7
{ 0,0,0,0,0,0,0,0,1,1,1,0,1,1,1,0,1 }, // = 8
{ 0,0,0,0,0,0,1,0,1,1,1,0,1,1,1,0,1 }, // = 9
{ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 }, // = Space
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, // = Full Lit
{ 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1 } // = SS
};
// LTP587P Segments: A,B,C,D,E,F,G,H,K,M,N,P,R,S,T,U,dp
boolean lampvals[9][9] = { { 0,1,1,1,1,1,1,1,1 }, // = Q or A or P
{ 1,0,1,1,1,1,1,1,1 }, // = W or S or Y
{ 1,1,0,1,1,1,1,1,1 }, // = E or D or X
{ 1,1,1,0,1,1,1,1,1 }, // = R or F or C
{ 1,1,1,1,0,1,1,1,1 }, // = T or G or V
{ 1,1,1,1,1,0,1,1,1 }, // = Z or H or B
{ 1,1,1,1,1,1,0,1,1 }, // = U or J or N
{ 1,1,1,1,1,1,1,0,1 }, // = I or K or M
{ 1,1,1,1,1,1,1,1,0 } // = O or L
};
int value_row1 = 0;
int value_row2 = 0;
int value_row3 = 0;
char key = 91;
int led1 = 40;
int led2 = 42;
int led3 = 44;
int led4 = 46;
int led5 = 48;
int wait = 100;
void setup() {
for (int index = 0 ; index <= 3; index++) {
pinMode (anode[index], OUTPUT);
digitalWrite (anode[index], 1);
}
for (int index = 0 ; index <= 16; index++) {
pinMode (segment[index], OUTPUT);
digitalWrite (segment[index], 1);
}
// initialize the digital pins as an output.
pinMode(led1, OUTPUT);
pinMode(led2, OUTPUT);
pinMode(led3, OUTPUT);
pinMode(led4, OUTPUT);
pinMode(led5, OUTPUT);
for (int index = 0 ; index <= 2; index++) {
pinMode (lanode[index], OUTPUT);
digitalWrite (lanode[index], 1);
}
for (int index = 0 ; index <= 8; index++) {
pinMode (lamp[index], OUTPUT);
digitalWrite (lamp[index], 1);
}
}
void loop() {
sixteenSegWrite(0, 38);
sixteenSegWrite(1, 38);
sixteenSegWrite(2, 38);
sixteenSegWrite(3, 38);
digitalWrite(led1, HIGH); // turn the LED on (HIGH is the voltage level)
delay(200); // wait for a second
digitalWrite(led1, LOW); // turn the LED off by making the voltage LOW
delay(wait); // wait for a second
digitalWrite(led2, HIGH); // turn the LED on (HIGH is the voltage level)
delay(200); // wait for a second
digitalWrite(led2, LOW); // turn the LED off by making the voltage LOW
delay(wait); // wait for a second
digitalWrite(led3, HIGH); // turn the LED on (HIGH is the voltage level)
delay(200); // wait for a second
digitalWrite(led3, LOW); // turn the LED off by making the voltage LOW
delay(wait); // wait for a second
digitalWrite(led4, HIGH); // turn the LED on (HIGH is the voltage level)
delay(200); // wait for a second
digitalWrite(led4, LOW); // turn the LED off by making the voltage LOW
delay(wait); // wait for a second
digitalWrite(led5, HIGH); // turn the LED on (HIGH is the voltage level)
delay(200); // wait for a second
digitalWrite(led5, LOW); // turn the LED off by making the voltage LOW
delay(wait); // wait for a second
for (int index = 0 ; index <= 2; index++) {
digitalWrite (lanode[index], 0);
for (int mychar = 0; mychar < 9; mychar++) {
for (int sindex = 0; sindex < 9; sindex++) {
digitalWrite(lamp[sindex], lampvals[mychar][sindex]);
delay (30);
}
}
digitalWrite (lanode[index], 1);
}
}
void sixteenSegWrite(int digit, int character) {
digitalWrite(anode[digit],0);
for (int index = 0; index < 17; index++) {
digitalWrite(segment[index], segmentvals[character][index]);
}
}
Step 8: More Software!
In Mode 0, Default Mode, the Enigma is nothing but a simple typewriter with a Marquee that displays its Model Number.
Mode 1 allows the user to select the 3 (out of 8) Rotors he will use along with which one (of the 2) Reflector he wants to use.
In Mode 2, the user can select the Internal position of each Rotor.
Mode 3 is used to specify the starting (external) position of each Rotor.
In Mode 4, a user can enter up to 10 Swapped pairs of letters.
Mode 5 is Run mode and at that point, the Enigma will encrypt or decrypt any letter typed on the keyboard.
Here is the Complete sketch that runs the whole Enigma:
/* S&T GeoTronics Enigma Code. This Arduino Mega custom shield is programmed to replicate
exactly the behavior of a true German M4 Enigma machine.
It uses 4 16-Segment units, 5 LEDs, 26 Lamps setup as keyboard, 26 keyboard buttons
& 10 Function keys. The 115 light emitting diodes are charlie-plexed to minimize the
amount of pins needed down to 38 and all 36 pushbuttons keys are sharing a total of 4 pins.
Designed, assembled & programmed by Marc Tessier & James Sanderson 9/20/13
*/
// Define the variables
unsigned long time = millis();
unsigned long otime = time;
int inpin[4] = {A0, A1, A2, A3};
int inval[4] = {0, 0, 0, 0};
int keyval = 100;
boolean windex = 0;
boolean windex1 = 0;
boolean windex2 = 0;
int lampval = 100;
int procesval = 0;
int procesvala = 0;
int mode = 0;
unsigned long mtime;
int mdex =0;
// Define each Nixie character
int dig1 = 37;
int dig2 = 37;
int dig3 = 37;
int dig4 = 37;
int data[36] = {36,36,36,36,18,39,19,36,6,4,14,19,17,14,13,8,2,18,36,4,13,8,6,12,0,36,12,0,17,10,36,30,36,36,36,36} ;
// Define the 16-Segments Pins as 2 Arrays
int segment[17] = {24,22,25,31,38,36,32,30,28,26,23,27,33,35,34,29,37}; //cathode array
int anode[4] = {39,41,43,45}; //annode array commin annode
// Define the 26 Lamps as a 2D Array
int lamparray[26] [2] = {{12,10},{13,5},{13,7},{12,8},{11,8},{12,7,},{12,6},{12,5},{11,3},{12,4},
{12,3},{13,2},{13,3},{13,4},{11,2},{13,10},{11,10},{11,7},{12,9},{11,6},
{11,4},{13,6},{11,9},{13,8},{13,9},{11,5}};
// Define the 12 Lamp Pins for initialization
int lamppin[12] = {2,3,4,5,6,7,8,9,10,11,12,13}; //2 to 10 cathode, 11 to 13 common annode
// Define each LTP587P Segments: A,B,C,D,E,F,G,H,K,M,N,P,R,S,T,U,dp
boolean segmentvals[40][17] = { { 0,0,0,0,1,1,0,0,1,1,1,0,1,1,1,0,1 }, // = A 0
{ 0,0,0,0,0,0,1,1,1,0,1,0,1,0,1,1,1 }, // = B 1
{ 0,0,1,1,0,0,0,0,1,1,1,1,1,1,1,1,1 }, // = C 2
{ 0,0,0,0,0,0,1,1,1,0,1,1,1,0,1,1,1 }, // = D 3
{ 0,0,1,1,0,0,0,0,1,1,1,0,1,1,1,0,1 }, // = E 4
{ 0,0,1,1,1,1,0,0,1,1,1,0,1,1,1,0,1 }, // = F 5
{ 0,0,1,0,0,0,0,0,1,1,1,0,1,1,1,1,1 }, // = G 6
{ 1,1,0,0,1,1,0,0,1,1,1,0,1,1,1,0,1 }, // = H 7
{ 0,0,1,1,0,0,1,1,1,0,1,1,1,0,1,1,1 }, // = I 8
{ 1,1,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1 }, // = J 9
{ 1,1,1,1,1,1,0,0,1,1,0,1,0,1,1,0,1 }, // = K 10
{ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1,1 }, // = L 11
{ 1,1,0,0,1,1,0,0,0,1,0,1,1,1,1,1,1 }, // = M 12
{ 1,1,0,0,1,1,0,0,0,1,1,1,0,1,1,1,1 }, // = N 13
{ 0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1 }, // = O 14
{ 0,0,0,1,1,1,0,0,1,1,1,0,1,1,1,0,1 }, // = P 15
{ 0,0,0,0,0,0,0,0,1,1,1,1,0,1,1,1,1 }, // = Q 16
{ 0,0,0,1,1,1,0,0,1,1,1,0,0,1,1,0,1 }, // = R 17
{ 0,0,1,0,0,0,1,0,1,1,1,0,1,1,1,0,1 }, // = S 18
{ 0,0,1,1,1,1,1,1,1,0,1,1,1,0,1,1,1 }, // = T 19
{ 1,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1 }, // = U 20
{ 1,1,1,1,1,1,0,0,1,1,0,1,1,1,0,1,1 }, // = V 21
{ 1,1,0,0,1,1,0,0,1,1,1,1,0,1,0,1,1 }, // = W 22
{ 1,1,1,1,1,1,1,1,0,1,0,1,0,1,0,1,1 }, // = X 23
{ 1,1,1,1,1,1,1,1,0,1,0,1,1,0,1,1,1 }, // = Y 24
{ 0,0,1,1,0,0,1,1,1,1,0,1,1,1,0,1,1 }, // = Z 25
{ 0,0,0,0,0,0,0,0,1,1,0,1,1,1,0,1,1 }, // = 0 26
{ 1,1,0,0,1,1,1,1,1,1,0,1,1,1,1,1,1 }, // = 1 27
{ 0,0,0,1,0,0,0,1,1,1,1,0,1,1,1,0,1 }, // = 2 28
{ 0,0,0,0,0,0,1,1,1,1,1,0,1,1,1,1,1 }, // = 3 29
{ 1,1,0,0,1,1,1,0,1,1,1,0,1,1,1,0,1 }, // = 4 30
{ 0,0,1,0,0,0,1,0,1,1,1,0,1,1,1,0,1 }, // = 5 31
{ 0,0,1,0,0,0,0,0,1,1,1,0,1,1,1,0,1 }, // = 6 32
{ 0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1 }, // = 7 33
{ 0,0,0,0,0,0,0,0,1,1,1,0,1,1,1,0,1 }, // = 8 34
{ 0,0,0,0,0,0,1,0,1,1,1,0,1,1,1,0,1 }, // = 9 35
{ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 }, // = Space 36
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, // = Full Lit 37
{ 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1 }, // = SS 38
{ 0,1,1,1,0,0,0,1,0,0,1,1,0,1,1,0,1} }; // = & 39
// LTP587P Segments: A,B,C,D,E,F,G,H,K,M,N,P,R,S,T,U,dp
// Define the 5 Mode LEDs
int led1 = 40;
int led2 = 42;
int led3 = 44;
int led4 = 46;
int led5 = 48;
//4,10,12, 5,11, 6, 3,16,21,25,13,19,14,22,24, 7,23,20,18,15, 0, 8, 1,17, 2, 9
//Define the rotor values A B C D E F G H I J K L M N O P Q
static const int rotorvals[12][78] = { { 4,10,12, 5,11, 6, 3,16,21,25,13,19,14,22,24, 7,123,20,18,15, 0, 8, 1,17, 2, 9,
4,10,12, 5,11, 6, 3,16,21,25,13,19,14,22,24, 7,123,20,18,15, 0, 8, 1,17, 2, 9,
4,10,12, 5,11, 6, 3,16,21,25,13,19,14,22,24, 7,123,20,18,15, 0, 8, 1,17, 2, 9 }, // wheel 1
{ 0, 9, 3,10,118, 8,17,20,23, 1,11, 7,22,19,12, 2,16, 6,25,13,15,24, 5,21,14, 4,
0, 9, 3,10,118, 8,17,20,23, 1,11, 7,22,19,12, 2,16, 6,25,13,15,24, 5,21,14, 4,
0, 9, 3,10,118, 8,17,20,23, 1,11, 7,22,19,12, 2,16, 6,25,13,15,24, 5,21,14, 4 }, // wheel 2
{ 1, 3, 5, 7, 9,11, 2,15,17,19,23,21,25,13,24, 4, 8,22, 6, 0,10,112,20,18,16,14,
1, 3, 5, 7, 9,11, 2,15,17,19,23,21,25,13,24, 4, 8,22, 6, 0,10,112,20,18,16,14,
1, 3, 5, 7, 9,11, 2,15,17,19,23,21,25,13,24, 4, 8,22, 6, 0,10,112,20,18,16,14 }, // wheel 3
{ 4,18,14,21,15,25, 9, 0,24,116,20, 8,17, 7,23,11,13, 5,19, 6,10, 3, 2,12,22, 1,
4,18,14,21,15,25, 9, 0,24,116,20, 8,17, 7,23,11,13, 5,19, 6,10, 3, 2,12,22, 1,
4,18,14,21,15,25, 9, 0,24,116,20, 8,17, 7,23,11,13, 5,19, 6,10, 3, 2,12,22, 1 }, // wheel 4
{ 21,25, 1,17, 6, 8,19,24,20,15,18, 3,13, 7,11,23, 0,22,12, 9,16,14, 5, 4, 2,110,
21,25, 1,17, 6, 8,19,24,20,15,18, 3,13, 7,11,23, 0,22,12, 9,16,14, 5, 4, 2,110,
21,25, 1,17, 6, 8,19,24,20,15,18, 3,13, 7,11,23, 0,22,12, 9,16,14, 5, 4, 2,110 }, // wheel 5
{ 9,15, 6,21,14,20,12, 5,24,16, 1, 4,113, 7,25,17, 3,10, 0,18,23,11, 8, 2,19,122,
9,15, 6,21,14,20,12, 5,24,16, 1, 4,113, 7,25,17, 3,10, 0,18,23,11, 8, 2,19,122,
9,15, 6,21,14,20,12, 5,24,16, 1, 4,113, 7,25,17, 3,10, 0,18,23,11, 8, 2,19,122 }, // wheel 6
{ 13,25, 9, 7, 6,17, 2,23,12,24,18,22,101,14,20, 5, 0, 8,21,11,15, 4,10,16, 3,119,
13,25, 9, 7, 6,17, 2,23,12,24,18,22,101,14,20, 5, 0, 8,21,11,15, 4,10,16, 3,119,
13,25, 9, 7, 6,17, 2,23,12,24,18,22,101,14,20, 5, 0, 8,21,11,15, 4,10,16, 3,119 }, // wheel 7
{ 5,10,16, 7,19,11,23,14, 2, 1, 9,18,115, 3,25,17, 0,12, 4,22,13, 8,20,24, 6,121,
5,10,16, 7,19,11,23,14, 2, 1, 9,18,115, 3,25,17, 0,12, 4,22,13, 8,20,24, 6,121,
5,10,16, 7,19,11,23,14, 2, 1, 9,18,115, 3,25,17, 0,12, 4,22,13, 8,20,24, 6,121 }, // wheel 8
{ 11,4,24,9,21,2,13,8,23,22,15,1,16,12,3,17,19,0,10,25,6,5,20,7,14,18,
11,4,24,9,21,2,13,8,23,22,15,1,16,12,3,17,19,0,10,25,6,5,20,7,14,18,
11,4,24,9,21,2,13,8,23,22,15,1,16,12,3,17,19,0,10,25,6,5,20,7,14,18 }, // Beta
{ 5,18,14,10,0,13,20,4,17,7,12,1,19,8,24,2,22,11,16,15,25,23,21,6,9,3,
5,18,14,10,0,13,20,4,17,7,12,1,19,8,24,2,22,11,16,15,25,23,21,6,9,3,
5,18,14,10,0,13,20,4,17,7,12,1,19,8,24,2,22,11,16,15,25,23,21,6,9,3 }, // Gamma
{ 4,13,10,16,0,20,24,22,9,8,2,14,15,1,11,12,3,23,25,21,5,19,7,17,6,18,
4,13,10,16,0,20,24,22,9,8,2,14,15,1,11,12,3,23,25,21,5,19,7,17,6,18,
4,13,10,16,0,20,24,22,9,8,2,14,15,1,11,12,3,23,25,21,5,19,7,17,6,18}, // = UKW-B
{ 17,3,14,1,9,13,19,10,21,4,7,12,11,5,2,22,25,0,23,6,24,8,15,18,20,16,
17,3,14,1,9,13,19,10,21,4,7,12,11,5,2,22,25,0,23,6,24,8,15,18,20,16,
17,3,14,1,9,13,19,10,21,4,7,12,11,5,2,22,25,0,23,6,24,8,15,18,20,16 } // = UKW-C
};
static const int rotorvali[10][78] = { { 20,22,24, 6, 0, 3, 5,15,21,25, 1, 4, 2,10,12,19, 7,23,18,11,17, 8,13,16,14, 9,
20,22,24, 6, 0, 3, 5,15,21,25, 1, 4, 2,10,12,19, 7,23,18,11,17, 8,13,16,14, 9,
20,22,24, 6, 0, 3, 5,15,21,25, 1, 4, 2,10,12,19, 7,23,18,11,17, 8,13,16,14, 9 }, //wheel 1 i
//
{ 0, 9,15, 2,25,22,17,11, 5, 1, 3,10,14,19,24,20,16, 6, 4,13, 7,23,12, 8,21,18,
0, 9,15, 2,25,22,17,11, 5, 1, 3,10,14,19,24,20,16, 6, 4,13, 7,23,12, 8,21,18,
0, 9,15, 2,25,22,17,11, 5, 1, 3,10,14,19,24,20,16, 6, 4,13, 7,23,12, 8,21,18 }, //wheel 2 i
{ 19, 0, 6, 1,15, 2,18, 3,16, 4,20, 5,21,13,25, 7,24, 8,23, 9,22,11,17,10,14,12,
19, 0, 6, 1,15, 2,18, 3,16, 4,20, 5,21,13,25, 7,24, 8,23, 9,22,11,17,10,14,12,
19, 0, 6, 1,15, 2,18, 3,16, 4,20, 5,21,13,25, 7,24, 8,23, 9,22,11,17,10,14,12 }, //wheel 3 i
{ 7,25,22,21, 0,17,19,13,11, 6,20,15,23,16, 2, 4, 9,12, 1,18,10, 3,24,14, 8, 5,
7,25,22,21, 0,17,19,13,11, 6,20,15,23,16, 2, 4, 9,12, 1,18,10, 3,24,14, 8, 5,
7,25,22,21, 0,17,19,13,11, 6,20,15,23,16, 2, 4, 9,12, 1,18,10, 3,24,14, 8, 5 }, //wheel 4 i
{ 16, 2,24,11,23,22, 4,13, 5,19,25,14,18,12,21, 9,20, 3,10, 6, 8, 0,17,15, 7, 1,
16, 2,24,11,23,22, 4,13, 5,19,25,14,18,12,21, 9,20, 3,10, 6, 8, 0,17,15, 7, 1,
16, 2,24,11,23,22, 4,13, 5,19,25,14,18,12,21, 9,20, 3,10, 6, 8, 0,17,15, 7, 1 }, //wheel 5 i
{ 18,10,23,16,11, 7, 2,13,22, 0,17,21,06,12, 4, 1, 9,15,19,24, 5, 3, 25,20, 8,14,
18,10,23,16,11, 7, 2,13,22, 0,17,21,06,12, 4, 1, 9,15,19,24, 5, 3, 25,20, 8,14,
18,10,23,16,11, 7, 2,13,22, 0,17,21,06,12, 4, 1, 9,15,19,24, 5, 3, 25,20, 8,14 }, //wheel 6 i
{ 16,12,6,24,21,15,4,3,17,2,22,19,8,0,13,20,23,5,10,25,14,18,11,7,9,1,
16,12,6,24,21,15,4,3,17,2,22,19,8,0,13,20,23,5,10,25,14,18,11,7,9,1,
16,12,6,24,21,15,4,3,17,2,22,19,8,0,13,20,23,5,10,25,14,18,11,7,9,1 }, //wheel 7 i
{ 16,9,8,13,18,0,24,3,21,10,1,5,17,20,7,12,2,15,11,4,22,25,19,6,23,14,
16,9,8,13,18,0,24,3,21,10,1,5,17,20,7,12,2,15,11,4,22,25,19,6,23,14,
16,9,8,13,18,0,24,3,21,10,1,5,17,20,7,12,2,15,11,4,22,25,19,6,23,14 }, //wheel 8 i
{ 17,11,5,14,1,21,20,23,7,3,18,0,13,6,24,10,12,15,25,16,22,4,9,8,2,19,
17,11,5,14,1,21,20,23,7,3,18,0,13,6,24,10,12,15,25,16,22,4,9,8,2,19,
17,11,5,14,1,21,20,23,7,3,18,0,13,6,24,10,12,15,25,16,22,4,9,8,2,19 }, //Beta i
{ 4,11,15,25,7,0,23,9,13,24,3,17,10,5,2,19,18,8,1,12,6,22,16,21,14,20,
4,11,15,25,7,0,23,9,13,24,3,17,10,5,2,19,18,8,1,12,6,22,16,21,14,20,
4,11,15,25,7,0,23,9,13,24,3,17,10,5,2,19,18,8,1,12,6,22,16,21,14,20 } }; //Gamma i
// Define a 2D Array for keeping the wheel locations & positions
int wheel[3][3] = {{26,0,0},{26,0,0},{26,0,0}};
int reflect[2] = {1,0};
// Define Array for plugbord values 25 x2 position 0 holds use position 1 holds value int plugu holds the total nomber of plugs used (10 max)
int plugval [2][26] = {{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25}};
int pluguse = 0; int paindex = 0; int pbindex = 1;
void setup() {
// Initialize all 38 LED pins as Output
for (int index = 0; index <= 11; index++) {
pinMode(lamppin[index], OUTPUT);
digitalWrite(lamppin[index],1);
}
for (int index = 0 ; index <= 3; index++) {
pinMode (anode[index], OUTPUT);
digitalWrite (anode[index], 1);
}
for (int index = 0 ; index <= 16; index++) {
pinMode (segment[index], OUTPUT);
digitalWrite (segment[index], 1);
}
pinMode(led1,OUTPUT);
pinMode(led2,OUTPUT);
pinMode(led3,OUTPUT);
pinMode(led4,OUTPUT);
pinMode(led5,OUTPUT);
// Serial.begin(9600);
// Initialize all 4 pusbutton pins as Input
for (int index = 0; index <= 3; index++) {
pinMode(inpin[index], INPUT);
}
}
void loop() {
// Keyboard debounce & test for new key pressed
time = millis();
if (time > otime + 500) {keyval = readkbde();}
if((keyval == 45) && (windex ==1)) {modeselect();}
// The whole Enigma machine operation revolves around which Operating Mode is current
if(mode == 0) {mode0();}
else if(mode == 1) {mode1();}
else if(mode == 2) {mode2();}
else if(mode == 3) {mode3();}
else if(mode == 4) {mode4();}
else if(mode == 5) {mode5();}
else { }
//Serial.println(keyval); // for debuging prints keybord value to serial monitor// for run or del
}
// This function takes care of figuring out which key has been pressed & returns a unique Integer
int readkbde() {
int kval = 100;
for (int index = 0; index <= 3; index++) { inval[index] = analogRead(inpin[index]); } //Reads analog input values
if((inval[0] > 925) && (inval[1] > 828) && (inval[2] > 730) && (inval[3] > 828)) {kval = 100;} // no key press
else if((inval[0] < 924) && (inval[0] > 915)) {kval = 49;} //up arrow 4
else if((inval[0] < 914) && (inval[0] > 903)) {kval = 48;} //up arrow 3
else if((inval[0] < 902) && (inval[0] > 887)) {kval = 47;} //up arrow 2
else if((inval[0] < 886) && (inval[0] > 865)) {kval = 46;} //up arrow 1
else if((inval[0] < 864) && (inval[0] > 836)) {kval = 45;} //mode
else if((inval[0] < 834) && (inval[0] > 793)) {kval = 44;} //enter
else if((inval[0] < 792) && (inval[0] > 724)) {kval = 43;}
else if((inval[0] < 723) && (inval[0] > 594)) {kval = 42;}
else if((inval[0] < 593) && (inval[0] > 260)) {kval = 41;}
else if(inval[0] < 259 ) {kval = 40;}
else if((inval[1] < 827) && (inval[1] > 807)) {kval = 14;}
else if((inval[1] < 806) && (inval[1] > 781)) {kval = 8;}
else if((inval[1] < 780) && (inval[1] > 749)) {kval = 20;}
else if((inval[1] < 748) && (inval[1] > 706)) {kval = 25;}
else if((inval[1] < 705) && (inval[1] > 647)) {kval = 19;}
else if((inval[1] < 646) && (inval[1] > 555)) {kval = 17;}
else if((inval[1] < 554) && (inval[1] > 418)) {kval = 4;}
else if((inval[1] < 417) && (inval[1] > 169)) {kval = 22;}
else if(inval[1] < 168 ) {kval = 16;}
else if((inval[2] < 729) && (inval[2] > 699)) {kval = 10;}
else if((inval[2] < 698) && (inval[2] > 660)) {kval = 9;}
else if((inval[2] < 659) && (inval[2] > 611)) {kval = 7;}
else if((inval[2] < 610) && (inval[2] > 547)) {kval = 6;}
else if((inval[2] < 546) && (inval[2] > 455)) {kval = 5;}
else if((inval[2] < 454) && (inval[2] > 331)) {kval = 3;}
else if((inval[2] < 330) && (inval[2] > 127)) {kval = 18;}
else if(inval[2] < 126 ) {kval = 0;}
else if((inval[3] < 827) && (inval[3] > 807)) {kval = 11;}
else if((inval[3] < 806) && (inval[3] > 781)) {kval = 12;}
else if((inval[3] < 780) && (inval[3] > 749)) {kval = 13;}
else if((inval[3] < 748) && (inval[3] > 706)) {kval = 1;}
else if((inval[3] < 705) && (inval[3] > 647)) {kval = 21;}
else if((inval[3] < 646) && (inval[3] > 555)) {kval = 2;}
else if((inval[3] < 554) && (inval[3] > 418)) {kval = 23;}
else if((inval[3] < 417) && (inval[3] > 169)) {kval = 24;}
else if(inval[3] < 169 ) {kval = 15;}
else {kval = 100;}
if(kval < 99) {otime = millis();} //Starts key debounce timer
if((kval >= 0) && (kval <= 99)) {windex = 1;} //windex showing true (1) indicates the return of a fresh key stroke
return kval;
}
// Function to change operating Mode
void modeselect() {
mode++;
if(mode >=6) {mode = 0;}
windex = 0;
}
// Default Mode: Enigma is a Typewriter
void mode0() {
if((keyval >= 0) && (keyval <= 25)) {lampval = keyval;}
lampita();
marquee();
lampitb();
}
// Select the Rotors & the Reflector
void mode1() {
int index;
digitalWrite(led1, HIGH);
if(windex == 1) {if((keyval == 43) || (keyval == 46)) {reflect[0]++; if (reflect[0] > 2) {reflect[0] = 1;} windex = 0;}}
if(windex == 1) {if(keyval == 47) { for(index = wheel[2][0];(index == wheel[1][0]) || (index == wheel[0][0]) || (index == wheel[2][0]);
index++) {if(index > 33) {index = 26;} }wheel[2][0] = index; windex = 0;}}
if(windex == 1) {if(keyval == 48) { for(index = wheel[1][0];(index == wheel[2][0]) || (index == wheel[0][0]) || (index == wheel[1][0]);
index++) {if(index > 33) {index = 26;} }wheel[1][0] = index; windex = 0;}}
if(windex == 1) {if(keyval == 49) { for(index = wheel[0][0];(index == wheel[2][0]) || (index == wheel[1][0]) || (index == wheel[0][0]);
index++) {if(index > 33) {index = 26;} }wheel[0][0] = index; windex = 0;}}
if(windex == 1) {if(keyval == 42) { for(index = wheel[2][0];(index == wheel[1][0]) || (index == wheel[0][0]) || (index == wheel[2][0]);
index--) {if(index < 28) {index = 35;} }wheel[2][0] = index; windex = 0;}}
if(windex == 1) {if(keyval == 41) { for(index = wheel[1][0];(index == wheel[2][0]) || (index == wheel[0][0]) || (index == wheel[1][0]);
index--) {if(index < 28) {index = 35;} }wheel[1][0] = index; windex = 0;}}
if(windex == 1) {if(keyval == 40) { for(index = wheel[0][0];(index == wheel[2][0]) || (index == wheel[1][0]) || (index == wheel[0][0]);
index--) {if(index < 28) {index = 35;} }wheel[0][0] = index; windex = 0;}}
dig2 = wheel[2][0]; dig3 = wheel[1][0]; dig4 = wheel[0][0]; dig1 = reflect[0];
nixisend();
dig1 =37; dig2 = 37; dig3 = 37; dig4 = 37;
digitalWrite(led1, LOW);
}
// Position the Inner setting of each Rotor
void mode2() {
digitalWrite(led2, HIGH);
if(windex == 1){
if(keyval == 47) {wheel[2][1]++; if(wheel[2][1] > 25) {wheel[2][1] = 0;}}
if(keyval == 48) {wheel[1][1]++; if(wheel[1][1] > 25) {wheel[1][1] = 0;}}
if(keyval == 49) {wheel[0][1]++; if(wheel[0][1] > 25) {wheel[0][1] = 0;}}
if(keyval == 42) {wheel[2][1]--; if(wheel[2][1] < 0) {wheel[2][1] = 25;}}
if(keyval == 41) {wheel[1][1]--; if(wheel[1][1] < 0) {wheel[1][1] = 25;}}
if(keyval == 40) {wheel[0][1]--; if(wheel[0][1] < 0) {wheel[0][1] = 25;}}
windex = 0; }
dig2 = wheel[2][1]; dig3 = wheel[1][1]; dig4 = wheel[0][1]; dig1 = 0;
nixisend();
dig1 =37; dig2 = 37; dig3 = 37; dig4 = 37;
digitalWrite(led2, LOW);
}
// Position the Start character of each Wheel
void mode3() {
digitalWrite(led3, HIGH);
if(windex == 1){
if(keyval == 46) {reflect[1]++; if(reflect[1] > 25) {reflect[1] = 0;}}
if(keyval == 47) {wheel[2][2]++; if(wheel[2][2] > 25) {wheel[2][2] = 0;}}
if(keyval == 48) {wheel[1][2]++; if(wheel[1][2] > 25) {wheel[1][2] = 0;}}
if(keyval == 49) {wheel[0][2]++; if(wheel[0][2] > 25) {wheel[0][2] = 0;}}
if(keyval == 43) {reflect[1]--; if(reflect[1] < 0) {reflect[1] = 25;}}
if(keyval == 42) {wheel[2][2]--; if(wheel[2][2] < 0) {wheel[2][2] = 25;}}
if(keyval == 41) {wheel[1][2]--; if(wheel[1][2] < 0) {wheel[1][2] = 25;}}
if(keyval == 40) {wheel[0][2]--; if(wheel[0][2] < 0) {wheel[0][2] = 25;}}
windex = 0; }
dig2 = wheel[2][2]; dig3 = wheel[1][2]; dig4 = wheel[0][2]; dig1 = reflect[1];
nixisend();
dig1 =37; dig2 = 37; dig3 = 37; dig4 = 37;
digitalWrite(led3, LOW);
}
// Define the Plugboard pairs
void mode4() {
int index = 0;
digitalWrite(led4, HIGH);
if(pluguse <= 9) {
if(plugval[0][paindex] == 1) {for(index = paindex;(index == paindex) || (index == pbindex) || (plugval[0][index] == 1); index++) {if(index > 24) {index = -1;}} paindex = index;}
if(plugval[0][pbindex] == 1) {for(index = pbindex;(index == pbindex) || (index == paindex) || (plugval[0][index] == 1); index++) {if(index > 24) {index = -1;}} pbindex = index;}
if(windex == 1) {
if(keyval == 46) { for(index = paindex;(index == paindex) || (index == pbindex) || (plugval[0][index] == 1); index++) {if(index > 24) {index = -1;}} paindex = index; windex = 0; }
if(keyval == 43) { for(index = paindex;(index == paindex) || (index == pbindex) || (plugval[0][index] == 1); index--) {if(index < 1) {index = 26;}} paindex = index; windex = 0; }
if(keyval == 49) { for(index = pbindex;(index == pbindex) || (index == paindex) || (plugval[0][index] == 1); index++) {if(index > 24) {index = -1;}} pbindex = index; windex = 0; }
if(keyval == 40) { for(index = pbindex;(index == pbindex) || (index == paindex) || (plugval[0][index] == 1); index--) {if(index < 1) {index = 26;}} pbindex = index; windex = 0; }
if(keyval == 44) { plugval[0][paindex] = 1; plugval[1][paindex] = pbindex; plugval[0][pbindex] = 1; plugval[1][pbindex] = paindex; windex = 0; pluguse++;}
}
dig2 = 19; dig3 = 14; dig4 = pbindex; dig1 = paindex;
nixisend();
dig1 =37; dig2 = 37; dig3 = 37; dig4 = 37;
}
else {done();}
digitalWrite(led4, LOW);
}
// This is Normal Operation Mode to Encrypt/Decrypt
void mode5() {
int pv = 0;
digitalWrite(led5, HIGH);
if((keyval >= 0) && (keyval <= 25)) { if(windex == 1){procesvala = keyval; indexwheels();}}
windex = 0;
procesval = procesvala;
procesval = plugval[1][procesval];
// Serial.print (procesval); Serial.print(" ");
pv = (procesval + (wheel[0][2] - wheel[0][1]));
if(pv < 0) {pv = pv + 26;}
procesval = rotorvals[wheel[0][0] -27][pv];
if(procesval >= 100) {procesval = procesval - 100;}
procesval = (procesval - (wheel[0][2] - wheel[0][1]));
if(procesval < 0) {procesval = procesval + 26;}if(procesval > 25) {procesval = procesval - 26;}
// Serial.print (procesval); Serial.print(" ");
pv = (procesval + (wheel[1][2] - wheel[1][1]));
if(pv < 0) {pv = pv + 26;}
procesval = rotorvals[wheel[1][0] -27][pv];
if(procesval >= 100) {procesval = procesval - 100;}
procesval = (procesval - (wheel[1][2] - wheel[1][1]));
if(procesval < 0) {procesval = procesval + 26;}if(procesval > 25) {procesval = procesval - 26;}
// Serial.print (procesval); Serial.print(" ");
pv = (procesval + (wheel[2][2] - wheel[2][1]));
if(pv < 0) {pv = pv + 26;}
procesval = rotorvals[wheel[2][0] -27][pv];
if(procesval >= 100) {procesval = procesval - 100;}
procesval = (procesval - (wheel[2][2] - wheel[2][1]));
if(procesval < 0) {procesval = procesval + 26;}if(procesval > 25) {procesval = procesval - 26;}
// Serial.print (procesval); Serial.print(" ");
pv = (procesval );
procesval = rotorvals[reflect[0] + 7][pv];
if(procesval >= 100) {procesval = procesval - 100;}
if(procesval < 0) {procesval = procesval + 26;}if(procesval > 25) {procesval = procesval - 26;}
//Serial.print (procesval); Serial.print(" ");
procesval = rotorvals[reflect[0] + 9][procesval];
//Serial.print (procesval); Serial.print(" ");
pv = (procesval +26);
procesval = rotorvali[reflect[0] + 7][pv];
if(procesval >= 100) {procesval = procesval - 100;}
if(procesval < 0) {procesval = procesval + 26;}if(procesval > 25) {procesval = procesval - 26;}
// Serial.print (procesval); Serial.print(" ");
pv = (procesval + (wheel[2][2] - wheel[2][1]));
if(pv < 0) {pv = pv + 26;}
procesval = rotorvali[wheel[2][0] -27][pv];
if(procesval >= 100) {procesval = procesval - 100;}
procesval = (procesval - (wheel[2][2] - wheel[2][1]));
if(procesval < 0) {procesval = procesval + 26;}if(procesval > 25) {procesval = procesval - 26;}
//Serial.print (procesval); Serial.print(" ");
pv = (procesval + (wheel[1][2] - wheel[1][1]));
if(pv < 0) {pv = pv + 26;}
procesval = rotorvali[wheel[1][0] -27][pv];
if(procesval >= 100) {procesval = procesval - 100;}
procesval = (procesval - (wheel[1][2] - wheel[1][1]));
if(procesval < 0) {procesval = procesval + 26;}if(procesval > 25) {procesval = procesval - 26;}
//Serial.print (procesval); Serial.print(" ");
pv = (procesval + (wheel[0][2] - wheel[0][1]));
if(pv < 0) {pv = pv + 26;}
procesval = rotorvali[wheel[0][0] -27][pv];
if(procesval >= 100) {procesval = procesval - 100;}
procesval = (procesval - (wheel[0][2] - wheel[0][1]));
if(procesval < 0) {procesval = procesval + 26;}if(procesval > 25) {procesval = procesval - 26;}
// Serial.print (procesval); Serial.print(" ");
procesval = plugval[1][procesval];
lampval = procesval;
//Serial.println(lampval);
dig2 = wheel[2][2]; dig3 = wheel[1][2]; dig4 = wheel[0][2]; dig1 = reflect[1];
lampita();
nixisend();
lampitb();
dig1 =37; dig2 = 37; dig3 = 37; dig4 = 37;
digitalWrite(led5, LOW);
}
// Helper Function to light the proper key
void lampita() {
digitalWrite(lamparray[lampval][0],0);
digitalWrite(lamparray[lampval][1],0);
}
void lampitb(){
digitalWrite(lamparray[lampval][0],1);
digitalWrite(lamparray[lampval][1],1);
}
// Help Function to illuminate "Nixies"
void nixisend() {
sixteenSegWrite(0, dig1);
sixteenSegWrite(1, dig2);
sixteenSegWrite(2, dig3);
sixteenSegWrite(3, dig4);
}
void marquee() {
time = millis();
if( mtime < time) {
mtime = time + 400;
mdex++;}
dig1 = data[mdex];
dig2 = data[mdex + 1];
dig3 = data[mdex + 2];
dig4 = data[mdex + 3];
if (mdex >= 31) {mdex = 0;}
nixisend();
}
// Function that actually turns on each of 17 appropriate segments on each "Nixie"
void sixteenSegWrite(int digit, int character) {
digitalWrite(anode[digit],0);
for (int index = 0; index < 17; index++) {
digitalWrite(segment[index], segmentvals[character][index]);
}
delay(7);
for (int index =0; index <= 16; index++) {
digitalWrite(segment[index], 1);
}
digitalWrite(anode[digit], 1);
}
void done() {
dig1 = 3; dig2 = 14; dig3 = 13; dig4 = 4;
nixisend();
dig1 =37; dig2 = 37; dig3 = 37; dig4 = 37;
}
void indexwheels() {
// Serial.print(rotorvals[wheel[0][0]-27][wheel[0][2]]);
// Serial.print(" "); Serial.print(wheel[0][0]-27); Serial.print(" "); Serial.println(wheel[0][2]);
if(rotorvals[wheel[0][0]-27][wheel[0][2]] >= 100) {windex1 = 1;}
wheel[0][2]++; if(wheel[0][2] > 25) {wheel[0][2] = 0;}
windex = 0;
if(windex1 == 1){
if(rotorvals[wheel[1][0]-27][wheel[1][2]] >= 100) {windex2 = 1;}
wheel[1][2]++; if(wheel[1][2] > 25) {wheel[1][2] = 0;}}
windex1 = 0;
if(windex2 == 1){
wheel[2][2]++; if(wheel[2][2] > 25) {wheel[2][2] = 0;}
windex2 = 0; }
}
IF there is enough interest, we plan on are creating a PCB that would will allow for a much easier assembly of this wonderful fully functional Enigma replica. Please visit http://www.stgeotronics.com to find out about availability, pricing & to place your order or pre-order now. The Circuit schematics are published, so the PCB has entered it's development stage. Soon to be tested.
Step 9: Circuit Schematics
The first one shows how our fake nixie tubes (the 4 elevated 16-Segment units) are wired in order to provide the response that the rotors provide on a real Enigma machine. They are also used in each setup mode to provide feedback on the setting up of the machine.
The second one shows how each of the 26 keyboard buttons and 10 function keys, the 26 key lamps & the 5 LEDS are all wired.
All LED resistors are 470 Ohms and all Pushbutton resistors are 1KOhm.
Stay tuned for the PCB design file...
We hope you enjoyed our first Instructable!
Thank You for your time.
Step 10: Prototype Boards
The boards we ordered are almost perfect: they each need a little jumper wire to fix a small design flaw. This small flaw does not affect behavior or functionality and is an easy fix.
With this jumper in place, you can now make your own Enigma Replica much easier & faster than running all wires this instructable shows. So, we are now happy to report that testing is completed & the new boards work just fine!
We are now accepting orders at www.stgeotronics.com & have started shipping.
Pictures of the assembly have been added as Step 11.
Thank You for your overwhelming support & wonderful feedback!
Step 11: Assembled Kits
Thank You for the support & feedback!